Försurning och kalkning i Jönköpings län
Verksamhetsberättelse 2005
Förurning och kalkning i Jönköpings län

Verksamhetsberättelse 2005

MEDDELANDE NR 2006:29
Meddelande nr 2006:29
Referens Eva Hallgren Larsson, Naturavdelningen, 2006
Kontaktperson Eva Hallgren Larsson, Länsstyrelsen i Jönköpings län,
Direkttelefon 036-39 50 63, e-post eva.hallgren@f.lst.se
Webbplats www.f.lst.se
ISSN 1101-9425
ISRN LSTY-F-M—06/29-SE
Upplaga 90 ex.
Tryckt på Länsstyrelsen, Jönköping 2006
Miljö och återvinning Rapporten är tryckt på miljömärkt papper och omslaget består av PET-plast, kartong, bomullsäv och miljömärkt lim. Vid återvinning tas omslaget bort och sorteras som brännbart avfall, rapportsidorna sorteras som papper.

© Länsstyrelsen i Jönköpings län 2006
# Innehållsförteckning

1. **Sammanfattning** .............................................. 5  

2. **Inledning** ................................................................ 7  

3. **Klimatet 2005** ...................................................... 8  
   3.1 Mild vinter, varm sensommar, torr höst ..................... 8  
   3.2 Låga flöden på hösten .......................................... 9  

4. **Försurande luftföroreningar** .................................. 10  

5. **Genomförda kalkningsåtgärder** .............................. 13  
   5.1 Jämförelse med tidigare år .................................... 13  
   5.2 Kalkning med ökade priser 2005 ............................. 14  

6. **Biologisk återställning** ........................................... 16  
   6.1 Genomförda och planerade åtgärder 2005-06 ............... 16  
   6.1.1 Vätterbäckar ..................................................... 16  
   6.1.2 Nissan ............................................................ 18  
   6.1.3 Exempel Laggaredammen i Hökesån ...................... 18  
      6.1.3.1 Hökesåns höga naturvärden .......................... 18  
      6.1.3.2 Laggaredammen .......................................... 19  
      6.1.3.3 Att riva en damm ........................................ 20  
      6.1.3.4 Gott resultat .............................................. 21  
      6.1.3.5 Eftertanken ............................................... 21  

7. **Effektuppföljning** ................................................ 22  
   7.1 Vattenkemi ......................................................... 22  
      7.1.1 Vattenkemisk måluppfyllelse ............................ 22  
   7.2 Biologi .............................................................. 25  
      7.2.1 Bottenfauna .................................................... 25  
      7.2.2 Kräftprovfiske ............................................... 27  
      7.2.3 Nätprovfiske .................................................. 28  
      7.2.4 Elfiske .......................................................... 30  
      7.2.5 Biologisk måluppfyllelse ................................... 32  

8. **Kalkningsplanering/utvärdering** ............................... 35  
   8.1 Åtgärdsplanen för kalkning, ett levande dokument ....... 35  
   8.2 Högflodesprovtagning .......................................... 35  
   8.3 Effekter av surstötar ............................................ 38  
   8.4 Kalkning i Emån, Mörrumsån och Svartån, 2002-04 ...... 40  

9. **Effekter av stormen Gudrun** .................................. 41  
   9.1 Kväve ............................................................... 41  
   9.2 Humus och kvicksilver ....................................... 41  
   9.3 Försurning ......................................................... 41  
   9.4 Timmerterminaler ................................................. 42  

10. **Exempel på resultat av kalkning** ............................ 43  
    10.1 Nissanöringen leker i Krakhultabäcken igen ............. 43
10.2 Fler arter och mindre försurningspåverkan på bottenfauna i Väster- och Österån ..........................................................44

11 Aska och kalk i skogen ..................................................46
11.1 Skogskalkning – inget nytt .............................................46
11.2 Behandling av hela avrinningsområden är nytt ..........48

12 Referenser .......................................................................49

Bilagor – nyckeltal
Måluppfyllelse – Vattenkemi och biologi
Uppgifter om kalkade objekt
Totala kostnader
Antal ton per metod och medel
Kostnader per metod och medel
Biologisk återställning
1 Sammanfattning

Försurning av mark och vatten är ett av Jönköpings läns största miljöproblem. Kalkning är nödvändigt för att uppnå miljömålen ”Bara naturlig försurning”, ”Levande sjöar och vattendrag” och ”Ett rikt växt- och djurliv”. Det mesta talar för att kalkningen kommer att behövas i många år framåt. Även om nedfallet av försurande ämnen har minskat drastiskt sedan slutet av 1980-talet lever ”minnet i markerna kvar”. Det kommer att ta lång tid för markerna att återhämta sig efter en lång period (50-100 år) med kraftigt förhöjd belastning av försurande svelv och kväve. För vissa marker, med mycket utarmade förråd av buffrande basiska ämnen, kommer en naturlig återhämtning sannolikt inte att ske och där kan andra åtgärder bli aktuella.


Under 2005 har åtgärder med biologisk återställning i försurade vatten fått ordentligt genomslag och ett stort antal projekt har avslutats eller påbörjats i länet. Några har syftat till att öppna och förbättra fiskvägar i Vätterns tillflöden för att på så vis gynna Vätteröringen som påverkats negativt av försurning.

För 342 lokaler har en vattenkemisk målsättning formulerats. För drygt 80 % av längden vattendrag och antalet sjöar har den uppfyllts. Räknar man enbart areal sjöyta var målsättningen betydligt bättre; 96 %. Detta är något bättre än föregående år. Måluppfyllelsen när det gäller effekter på biota har generellt varit lägre än den vattenkemiska, vilket är normalt. Av de undersökningar som gjordes 2005 har målsättningen varit uppnådd i 65 % av längden vattendrag. För sjöarna gäller att målet har nåtts i 55 % av de undersökningar som gjorts under 2005, både baserat på antalet sjöar och arealen sjöyta. Biologiska undersökningar är förhållandevis dyra och görs därför inte varje år. Om beräkningen istället görs på den senaste undersökningsen i respektive sjö blir måluppfyllelsen bättre; 75-90 %.


I mars 2005 studerades surstötar genom dagliga mätningar på två lokaler. I denna studie noterades större variation i ett kalkat än i ett okalkat vattendrag och vattnet i det kalkade vattendraget blev så mycket som 10 gånger surare under loppet av två dagar. Utan kalkning hade vattnet sannolikt blivit ännu surare och resultaten visar att nuvarande kalkning var långt ifrån tillräcklig för att undvika kritiska nivåer
på pH. Dessa mycket kortvariga perioder med surt vatten kan vara svåra att upp-
täcka med hjälp av vattenkemiska provtagningar men ge tydliga effekter på det bio-
logiska livet.

Kalkningarna inom Emån, Mörrumsån och Svartån utvärderades under 2005
och visar till största delen (90 %) uppfylld målsättning. För vissa åtgärdsområden
föreslås tätare kalkning med något lägre doser.

För många kommer 2005 alltid att förknippas med stormen Gudrun som
drog fram över Götaland i januari, men året karaktäriseras även av en mild vinter,
varm sensommar och torr höst med låga flöden. Stormen Gudrun har också haft ef-
fecker på vattenkemin och sannolikt orsakat kraftigare surstötar under 2005. Dess-
utom har hyggesarealen ökat, vilket kan medföra ökade arealförluster av kväve, or-
ganiskt material och kvicksilver. Stora mängder timmer finns lagrat i timmertermi-
naler som bevattnas sommartid för att virkeskvaliteten ska bevaras. Detta har främst
påverkat halterna av fosfor och organiskt material i avrinnande vatten.

Positiva effekter av kalkningen redovisas från Krakhultabäcken i Jönköpings
kommun, där Nissanöringen åter kan reproducera sig, samt Väster- och Österån
inom Vaggeryd där bottenfaunan har återhämtat sig från försurningsskador.

Skogsmarksbalkning är ett sätt att långsiktigt bevara produktionskapaciteten i
försurad skogsmark samt att åtgärda mindre vattendrag och sjöar med kort omsätt-
ingstid. Askåtering görs på vissa arealer med uttag av biobränsle och i vissa fall
har askan blandats med kalk, vilket är positivt både för skogsmarken och avrinnande
vatten. Sedan början av 1990-talet har 25 000 ton kalk/aska spridits på 7 300 ha
skogsmark i Jönköpings län. Med syfte att utvärdera kalkningsmetoder för skogen
har tre mindre avrinningsområden i Norra Unnaryd behandlats med aska och kalk
under 2005-06.
2 Inledning

Föreliggande rapport sammanställer 2005 års arbete med att motverka effekterna av försurning i Jönköpings län. Den är länets verksamhetsberättelse för kalkningsverksamheten till Naturvårdsverket (Dnr 723/2766-06 Nv). Rapporten är resultat av ett lagarbete, där flera personer på olika sätt har deltagit. Vi som har arbetat med Länsstyrelsens kalkningsverksamhet under 2005 och bidragit med olika artiklar till rapporten är:

Tobias Haag
Ingela Tärnäsen
Bob Lind
Mikael Ljung
Gunnar Hedberg
Eva Hallgren Larsson

Även Katarina Zeipel (tjänstledig från maj), Sabine Unger och Jessica Nihl (föräldralediga från augusti) arbetade med Länsstyrelsens kalkningsverksamhet under 2005.

Betydligt fler personer, främst hos entreprenörer, inom Länsstyrelsen och de olika kommunerna, men även konsulter och examensarbetare, har deltagit i det dagliga arbetet och de olika program för uppföljning som regelbundet genomförs. Allt detta arbete, i form av bland annat planering, spridningskontroll, vattenkemisk och biologisk effektuppföljning, är av största vikt för att slutresultatet skall bli en länsövergripande och väl genomförd kalkningsverksamhet.
3 Klimatet 2005


Klimatet är en mycket viktig faktor vid tolkning av förhållandena i miljön. Det påverkar allt ifrån nederbördsmängder, nedfallet av försurande ämnen, ozonhalter i luften, flöde av olika ämnen i våra vattendrag till hur länge effekterna av genomförd kalkning varar etcetera. Dessa abiotiska förhållanden påverkar i sin tur det biologiska livet. Vädersituationen utgör därigenom grundinformation för att kunna göra rätt tolkning av data från miljöövervakningen.

3.1 Mild vinter, varm sensommar, torr höst

SMHI mäter nederbörd, temperatur och vattenföring vid ett antal lokaler i länet. Figur 3-1 visar att januari var tydligt varmare än normalt medan februari och mars uppvisade riktiga vintertemperaturer. Med början av juli, som var ovanligt varm, var resten av året varmare än normalt i Ramsjöholm. Medeltemperaturen för året var 1,9°C varmare än vad som varit normalt under referensperioden 1961-1990. Figur 3-1 visar också något mindre nederbördsmängder än genomsnittet för referensperioden. Under maj och juni noterades något mer nederbörd än vanligt, vilket kulminerade i juli som dock inleddes med fint högsommarväder med mycket värme och små nederbördsmängder. Efter två varma och torra veckor i juli kom kraftiga åskskurar på flera håll i landet och som helhet för juli noterades 120 mm nederbörd i Ramsjöholm, jämfört med genomsnittet på 77 mm. Nästan hela landet hade sedan en torr höst, vilket i Ramsjöholm var tydligast i september och november. Som helhet för året noterades medeltemperaturen 6,4°C och 615 mm nederbörd i Ramsjöholm.
3.2 Låga flöden på hösten


Figur 3-2: Månatlig medelvattenföring i Nissan vid N. Unnaryd (vänster) och Brusaån (höger), beräknat med SMHIs PULS modell (2).
4 Försurande luftföroreningar

Nedfallet av försurande luftföroreningar mäts sedan 1989 av Jönköpings läns Luftvårdsförbund. Förbundet är en sammanslutning av olika företag och organisationer med syfte att med gemensamt satsade resurser verka för en bättre luftmiljö i länet (3). Nedfallet mäts genom nederbördskemiska mätningar på öppet fält och krongroppsnät, vilket inkludrar torrdeposition i form av partiklar, gaser och aerosoler som finns i luften, fastnar på trädens barr och grenar och sköljs till marken av nederbörd. Krongropp visar därmed summan av våt- och torrdeposition men är också påverkat av upptag av ämnen i trädkronorna. Detta är mest påtagligt för kväve som är ett eftertraktat näringsämne och där krongropp i lågt eller mättligt belastade områden generellt visar betydligt mindre nedfall via krongropp än på öppet fält. För närmare metodikbeskrivning se (4).

Figur 4-1. Fyra av Jönköpings läns Luftvårdsförbunds lokaler med nedfalls- och markvattnemätningar inom Krongroppsnätet.

att mätningarna på dessa lokaler startade) vilket delvis förklarar den stora skillnaden avseende försurningssituation i länet. I takt med att torrdepositionen har minskat i omfattning har också de regionala skillnaderna avtagit. Om avtalade utsläppsminsknings avseende svavel genomförs beräknas svavelnedfallet till marken i Götaland år 2010 vara omkring 3 kg/ha och år, vilket är ungefär vad marken beräknas tåla på sikt. Mycket tyder på att denna nivå kommer att nås.

Figur 4-2. Uppmätt svavelnedfall via krondropp (kg/ha) på fyra lokaler med granskog.

Surhetsgraden i nedfallet har också minskat markant sedan slutet av 1980-talet, liksom skillnaden mellan nederbörd och krondropp. Under de tre första årens mätningar i Alandsryd noterades i genomsnitt pH-värde 4,4 i nederbörd. Samtidigt visade krondroppsmätningarna i genomsnitt pH-värde 4,1. Krondropp från de tre senaste åren har i genomsnitt haft pH-värde 4,9. De tre senaste årens mätningar i Fagerhult visar liten skillnad mellan surhetsgrad i nederbörd (4,9) och krondropp (5,0). Till skillnad mot resultaten de första åren var krondropp dessutom mindre surt än nederbörd, vilket varit det vanliga under senare år.

Figur 4-3 visar inte lika positiv utveckling för nedfallet av kväve utan där har nedfallet bela tiden varit på ungefär samma nivå. För 2004/05 redovisas tydligt högre värden än närmast föregående år, vilket delvis kan bero på ovanligt stor påverkan av pollen. I måttligt belastade områden såsom Jönköpings län visar krondroppsvården av kvävenedfallet generellt lägre värden än mätningarna på öppet fält, som genomsnitt för de tre senaste årens mätningar i Fagerhult redovisas 1,8 kg/ha. På samma sätt som för svavel beräknas nedfallet av kväve i Götaland år 2010 vara 5 kg/ha och år. Om inte mycket drastiska åtgärder genomförs kommer sannolikt denna nivå inte nås.

Figur 4-4 visar surt markvatten på dessa fyra lokaler. Vid flertalet provtagningar har pH-värdet varit under 5 och det är svårt att se någon tydlig trend mot förbättrade förhållanden. Samtidigt som belastningen av försurande svavel har minskat har markvattnets försurningsstatus alltså inte förbättrats. Detta beror på att det har varit lång period (50-100 år) med kraftigt förhöjd belastning av försurande ämnen och det kommer att ta lång tid för markerna att återhämta sig; "minnet i markerna lever kvar". Vissa marker, med mycket utarmade förråd av baskatjoner, kommer sannolikt inte att återhämta sig på naturlig väg och där kan åtgärder i form av skogsmarkkalkning bli aktuella för att bibehålla markernas produktionsförmåga. Även om inte försurningsbidraget är lika stort idag som för tjugo år sedan visar resultaten att fortsatt kalkning är angeläget och omfattningen bör styras av verksamhetens effektuppföljning. Tillförd kalkmängd bör dock kunna minska något på grund av att torrdepositionens omfattning har minskat. Tidigare har en markant års-tidsvariation av torrdepositionens omfattning noterats, med betydligt större torrdeposition under vinterhalvåret än under sommarhalvåret. Detta har starkt bidragit till de mycket kraftiga surstötar vid snösmältning/vårflod som tidigare varit så vanliga och slagit ut stora delar av det biologiska livet i våra vattendrag.

Figur 4-4. Uppmät pH-värde i markvatten från 0,5 m djup i mineraljorden.
5 Genomförda kalkningsåtgärder

Länets behov av kalkningsinsatser är stora. Cirka 700 sjöar och 150 vattendragssträckor är inordnade i 76 åtgärdsområden och totalt omfattas avrinningsområden motsvarande 50 % av länets yta. Figur 5-1 visar att i princip hela sydvästra delen av länets berörs.

Figur 5-1. Åtgärdsområden inom kalkningsverksamheten i Jönköpings län 2005.

5.1 Jämförelse med tidigare år

5.2 Kalkning med ökade priser 2005

Figur 5-3 visar fördelning mellan olika kalkningsinsatser i länet. Nytt för 2005 är att cirka 10% av den totala kalkmängden utgjordes av fuktad grovkalk (0,2-0,8 mm) på våtmark. Fördelen med den fuktade kalken är att den dammar mindre än torra produkter, vilket minskar risken för problem utanför det område som ska behandlas. Finare partikelfraktioner har över huvudtaget inte använts på våtmarker under 2005. Förhållandevis dyra granuler har heller inte använts. Andelen vomber på våtmarker var något mindre 2005 jämfört med närmast föregående år.

Kalkmängder 2005


Tabell 5-1. Spridd kalkmängd och pris per ton (inkl. spridning) i respektive kommun. Observera att i uträknat viktat medelpris för båtkalkning ingår sjöläggningskostnaden och för doserarkalkning ingår driftskostnaden.

<table>
<thead>
<tr>
<th>Kommun</th>
<th>Kalkmjöl</th>
<th>Helikopter 0,2-0,8</th>
<th>Helikopter 0,2-1</th>
<th>Värnamo</th>
<th>Vaggeryd</th>
<th>Vetlanda</th>
<th>Gnosjö</th>
<th>Gislaved</th>
<th>Habo</th>
<th>Jönköping</th>
<th>Nåssjö</th>
<th>Sävsjö</th>
<th>Totalt</th>
<th>Viktat medelpris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ton Kr/ton</td>
</tr>
<tr>
<td>Eksjö</td>
<td>887</td>
<td>878</td>
<td></td>
<td>2884349</td>
<td>849</td>
</tr>
<tr>
<td>Gislaved</td>
<td>984</td>
<td>1015</td>
<td></td>
<td>1242</td>
<td>1015</td>
</tr>
<tr>
<td>Grosjö</td>
<td>850</td>
<td>961</td>
<td>1025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1925</td>
<td>1013</td>
</tr>
<tr>
<td>Habo</td>
<td>890</td>
<td>946</td>
<td>1067</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4925</td>
<td>1043</td>
</tr>
<tr>
<td>Jönköping</td>
<td>799</td>
<td>1450</td>
<td>977</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1536</td>
<td>1043</td>
</tr>
<tr>
<td>Nåssjö</td>
<td>883</td>
<td>258</td>
<td>1013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>921</td>
<td>1067</td>
</tr>
<tr>
<td>Sävsjö</td>
<td>888</td>
<td>194</td>
<td>1023</td>
<td>585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3999</td>
<td>597</td>
</tr>
<tr>
<td>Vaggeryd</td>
<td>836</td>
<td>1459</td>
<td>1015</td>
<td>667</td>
<td>1040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>289</td>
<td>442</td>
</tr>
<tr>
<td>Vetlanda</td>
<td>886</td>
<td>348</td>
<td>528</td>
<td></td>
</tr>
<tr>
<td>Värnamo</td>
<td>856</td>
<td>315</td>
<td>1033</td>
<td></td>
</tr>
</tbody>
</table>

Viktat medelpris: 849, 1015, 1013, 1043, 1067, 597, 442
6 Biologisk återställning

6.1 Genomförda och planerade åtgärder 2005-06

2005 var året då biologisk återställning kom igång ordentligt med flera utföranden (Tabell 6-1 till Tabell 6-3). Det byggdes två omlöp i Skämningsforsån som mynnar i Vättern. Det ena byggdes för att Vätteröring ska kunna ta sig förbi den svårpassbara vägtruman under väg 195 (bekostas till största del av Vägverket region Sydöst samt strukturfondsmedel via Fiskeriverket). Längre uppströms fanns ett definitivt vandringshinder vid Sverkefors där ett omlöp färdigställdes. Arbetet i Skämningsforsån har också beviljats bidrag ur stiftelsen Fiskevård i Skaraborg om totalt 100 000 kr vilket är mycket glädjande.


I Betarpsbäcken, som mynnar i Västerån vid Burseryd, genomfördes ett flertal åtgärder vid vandringshinder för att dels gynna vandring av öring inom bäcken dels gynna större öring från Västerån. Längre upp i systemet gjordes en återintroduktion av flodkräfta.


6.1.1 Vätterbäckar

Tabell 6-1. Åtgärder inom biologisk återställning i kalkade vatten, avslutat 2005.

<table>
<thead>
<tr>
<th>Bå-nr</th>
<th>Vatten</th>
<th>Lokal</th>
<th>Åtgärd avslutad 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>067018</td>
<td>Skämningsforsån</td>
<td>Vägtrumma nr 195</td>
<td>Omlöp</td>
</tr>
<tr>
<td>067018</td>
<td>Skämningsforsån</td>
<td>Svärkefors</td>
<td>Omlöp</td>
</tr>
<tr>
<td>067007</td>
<td>Hökesån</td>
<td>Laggaredammen</td>
<td>Utrivning</td>
</tr>
<tr>
<td>067007</td>
<td>Pirkåsabäcken</td>
<td>Ovan mynningen 1</td>
<td>Fiskväg</td>
</tr>
<tr>
<td>101011</td>
<td>Åsabäcken</td>
<td>Vägtrumma Nissastigen</td>
<td>Förbättrad passage</td>
</tr>
<tr>
<td>101011</td>
<td>Åsabäcken</td>
<td>Vägtrumma grusväg</td>
<td>Förbättrad passage</td>
</tr>
<tr>
<td>101001</td>
<td>Lången</td>
<td>Lången</td>
<td>Återintrod. flodkräpta</td>
</tr>
<tr>
<td>101001</td>
<td>Betarpsbäcken</td>
<td>Vandringshinder A</td>
<td>Fiskväg</td>
</tr>
<tr>
<td>101001</td>
<td>Betarpsbäcken</td>
<td>Vandringshinder B, (vägtrummat)</td>
<td>Fiskväg</td>
</tr>
<tr>
<td>101001</td>
<td>Betarpsbäcken</td>
<td>Vandringshinder C, (ålkista)</td>
<td>Fiskväg</td>
</tr>
<tr>
<td>101001</td>
<td>Betarpsbäcken</td>
<td>Vandringshinder D, (gammalt dämme)</td>
<td>Omlöp</td>
</tr>
<tr>
<td>101001</td>
<td>Betarpsbäcken</td>
<td>Vandringshinder E (vägtrummor)</td>
<td>Förbättra passage</td>
</tr>
<tr>
<td>101001</td>
<td>Betarpsbäcken</td>
<td>Vandringshinder F (stenhög)</td>
<td>Förbättra passage</td>
</tr>
</tbody>
</table>

Tabell 6-2. Åtgärder inom biologisk återställning i kalkade vatten, avslutas 2006.

<table>
<thead>
<tr>
<th>Bå-nr</th>
<th>Vatten</th>
<th>Lokal</th>
<th>Åtgärd avslutas 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>067009</td>
<td>Knipån</td>
<td>Kvarnekulla</td>
<td>Omlöp</td>
</tr>
<tr>
<td>067015</td>
<td>Rödån</td>
<td>Väg 195</td>
<td>Vägtrumma</td>
</tr>
<tr>
<td>067011</td>
<td>Hornån</td>
<td>Väg 195</td>
<td>Vägtrumma</td>
</tr>
<tr>
<td>067007</td>
<td>Hökesån</td>
<td>Väg 195</td>
<td>Vägtrumma</td>
</tr>
<tr>
<td>067019</td>
<td>Nykyrkebäcken</td>
<td>Vandringshinder 2-5</td>
<td>Förbättra passage</td>
</tr>
<tr>
<td>067007</td>
<td>Pirkåsabäcken</td>
<td>2 vandringshinder</td>
<td>Förbättra passage</td>
</tr>
<tr>
<td>101001</td>
<td>Västerån</td>
<td>Timmershult</td>
<td>Utrivning</td>
</tr>
<tr>
<td>101009</td>
<td>Västerån</td>
<td>Skogsfors</td>
<td>Justering av fiskväg</td>
</tr>
<tr>
<td>101010</td>
<td>Radan</td>
<td>Radaholm</td>
<td>Justering av fiskväg</td>
</tr>
<tr>
<td>101012</td>
<td>Kyrkebäcken</td>
<td>Kyrkebäcken</td>
<td>Återintroduktion öring</td>
</tr>
<tr>
<td>101010</td>
<td>Svanån</td>
<td>Övre Svanån</td>
<td>Återintroduktion öring</td>
</tr>
<tr>
<td>098017</td>
<td>Ohsån</td>
<td>Ohs</td>
<td>Justering av fiskväg</td>
</tr>
<tr>
<td>098010</td>
<td>Högforsån</td>
<td>Högforsån</td>
<td>Återintroduktion öring</td>
</tr>
</tbody>
</table>

Tabell 6-3. Åtgärder inom biologisk återställning i kalkade vatten, påbörjas 2006.

<table>
<thead>
<tr>
<th>Bå-nr</th>
<th>Vatten</th>
<th>Lokal</th>
<th>Åtgärd påbörjas 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>067014</td>
<td>Svedån</td>
<td>Baskarps kraftverk</td>
<td>Förhandling om fiskväg</td>
</tr>
<tr>
<td>067007</td>
<td>Hökesån</td>
<td>Färgeridammen</td>
<td>Förprojektering fiskväg/ utrivning</td>
</tr>
<tr>
<td>067011</td>
<td>Hornån</td>
<td>Källebäcken</td>
<td>Förprojektering fiskväg/ utrivning</td>
</tr>
<tr>
<td>067011</td>
<td>Hornån</td>
<td>Hallefors kvarn</td>
<td>Förprojektering fiskväg/ utrivning</td>
</tr>
<tr>
<td>067011</td>
<td>Hornån</td>
<td>Myrebo</td>
<td>Förprojektering fiskväg/ utrivning</td>
</tr>
<tr>
<td>067001</td>
<td>Gräleboån</td>
<td>Gräleboån</td>
<td>Återintroduktion öring</td>
</tr>
<tr>
<td>101011</td>
<td>Nissan</td>
<td>Unnefors</td>
<td>Ansökan om utrivning</td>
</tr>
<tr>
<td>101009</td>
<td>Västerån</td>
<td>Linderfors</td>
<td>Fiskväg</td>
</tr>
<tr>
<td>098017</td>
<td>Ohsån</td>
<td>Ohsån</td>
<td>Etablering av Åråöring</td>
</tr>
</tbody>
</table>

I vägtrummorna under väg 195 i Rödån, Hornån samt Hökesån planeras åtgärder under 2006 för att de ska bli mer lättpasserbara för öring med flera arter. Dessa åtgärder ska betalas av Vägverket.

I Hökesån påbörjas förprojektering av åtgärder vid Färgeridammen, som ligger strax uppströms den under 2005 utrivna Laggaredammen. Förprojektering av åtgärder påbörjas också i Hornån.

I Pirkåsabäcken fortsätter arbetet med att göra nya områden tillgängliga för Vätteröringen genom att åtgärda två vandringshinder. Under 2005 åtgärdades det nedersta hindret och kvitto på åtgärderna sågs i form av stor lekfisk på hösten.

### 6.1.2 Nissan


I Västerån, som i Halland heter Kilan och mynnar i Nissan, finns en damm vid Timmershult som planeras att delvis rivas ut under 2006. Syftet är att förbinda fina strömförande sträckor med biflöden som kan fungera som uppväxt- och lekområde för öringen i Västerån.

I en annan Västerå, längre uppströms i Nissans avrinningsområde, återupptas en utredning om att anlägga en fiskväg vid Lindefors. I Västerån finns öring och flodpärlmussla.

### 6.1.3 Exempel Laggaredammen i Hökesån

#### 6.1.3.1 Hökesåns höga naturvärden

Hökesån är ett av flera fina vattendrag som mynnar i Vättern, i sjöns sydvästra del (Figur 6-1). Detta område mellan Hökensås och Vättern är en så kallad värdefaktor och aktuellt för långsiktigt bevarande (6). Här finns höga naturvärden både i skogsmark och vatten med lumna lövravinor och strömmade vattendrag. Länsstyrelsen har inom miljömålsarbetet med skydd och restaurering av vatten (Levande sjöar och vattendrag) under år 2005 föreslagit Hökesån som ett nationellt värdefullt vattendrag ut naturvärdefaktorn. Målsättningen är att så långt möjligt restaurera vat-
tendraget samt bevara värden långsiktigt. Ån kalkas sedan 1980 och vattenkemin är idag tillfredsställande.

Figur 6-1. Hökesån och platsen där Laggaredammen låg.


6.1.3.2 Laggaredammen
Laggaredammen lagligförklarades 1934 men uppfördes tidigare. Dammen försågs med ett kraftverk med vatten via en ca 200 m lång trätub vilka dock är rivna sedan länge. Fallhöjden uppgick till ca 3 m och skapade en ca 0,5 ha stor damm. Dammen med omgivande sträckor ägs av Habo kommun och området tjänar som friluftsområde med stövstigar och grillplats. En gångbro fanns anlagd på dammkroppen. I samband med en rensning av dammen 1993 uppfördes också en fiskväg av typ Denil-ränna som tyvärr aldrig fungerade (Figur 6-2).

Att riva dammen beräknades ge ett tillskott/tillgängliggöra ca 2 000 m² fina uppväxtområden för Vätterfisk. Dessutom finns ytterligare områden i biflodet Piråsabäcken. Nedströms dammen finns ca 35 000 m² tillgängligt. På sikt ska även nästa definitiva hinder, Färgeridammen, åtgärdas. Detta skulle tillgängliggöra ytterligare ca 8000 m² uppväxtområden för Vätterfisk.

6.1.3.3 Att riva en damm...
... visade sig nu inte vara helt enkelt. Rivningen av Laggaredammen kan ses som ett pilotobjekt för fiskevårdsarbetet med dammrivning i Jönköpings län.


Påverkan på sträckorna nedströms (under projektets gång) var av allt att döma relativt små. En hel del sand transporterades hit men elfiskeundersökningar visade inte att tätheten av öringungar minskat. Sanden kommer troligen att sakta "vandra" nedåt i ån för att på sikt lägga sig i lugnvanområden eller Vättern.

Habo kommun var huvudman och har stått för 15 % av kostnaderna mot 85 % statsbidrag. Projektet kostade totalt ca 340 kkr.

6.1.3.4 Gott resultat
Under våren 2004 då bottenluckorna öppnats hade flodnejonöga tagit sig förbi för lek på de nya strömsträckorna i dammen. På hösten lekte även Vätteröring här. Åtgärderna följs med elfiske; på en lokal ovan dammen har täthet av öring dubblerats till ca 120 öringar per 100 m² från åren 2001 till 2005 samtidigt som åldersstrukturen ändrats till större andel 0+, vilket är typiskt för sjölevande öring. Vid inventering av flodnejonöga med burar fångades 2006 ca 60 stycken på lekplats i gamla dammen.

6.1.3.5 Eftertanken
Vi lärde oss en hel del och några saker kan vara värda att nämna. Kompetens och tålamod är viktiga basingredienser för att det ska lyckas.

- Miljöbalken – tämligen omfattande arbete
  Processen kring Miljöbalken är relativt omfattande och tar vanligtvis en del tid. Man bör ha klart för sig eventuella befintliga tillstånd och även tänka igenom om åtgärden ryms inom en omprövning, om den kräver tillstånd eller om det kanske räcker med samråd 12:6. Det är också angeläget att tänka längsiktigt och t ex föröka undanröja gamla vattendomar med möjlighet för framtida exploatering etc.

- Dammsediment
  Undersök mäktighet och analysera kemiskt. Utför inga åtgärder innan det är klarlagt att det inte blir oacceptabla negativa konsekvenser. Vid grumlande åtgärder förlägg arbetet till perioder med kallt vatten för att minska påverkan på biota.

- Upphandla kontra ramavtal?
  Fiskevårdsprojekt är ofta specifika och annorlunda för entreprenörer. Det kan därför vara svårt att lyckas med en upphandling. Om kommunen är huvudman finns ofta ramavtal med entreprenörer inom vilket projektet kan rymmas.
7 Effektuppföljning

7.1 Vattenkemi

Den vattenkemiska kalkeffektuppföljningen utfördes under 2005 enligt följande provtagningsprogram: Vattenkemi målsjöar (kort och utökad parameterlista), Vattenkemi målvattendrag (kort och utökad parameterlista), Vattenkemi styrpunkter i sjöar och vattendrag samt Referensvattendrag. Provtagning sker i huvudsak vid högflöden. Tabell 7-1 visar upplägget av de vattenkemiska effektuppföljningsprogrammen och Tabell 7-2 vilka parametrar som analyseras.

Tabell 7-1. Beskrivning av de olika vattenkemiska effektuppföljningsprogrammen med avseende på frekvens, tidpunkt, lokal samt om oorganiskt aluminium ska ingå.

<table>
<thead>
<tr>
<th>Frekvens ggr/år</th>
<th>Parameterlista</th>
<th>Tidpunkt</th>
<th>Lokal</th>
<th>Oorg. Al</th>
<th>Antal lokaler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Målsjöar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kort (VK3)</td>
<td>Högflöden</td>
<td></td>
<td></td>
<td>* 165</td>
</tr>
<tr>
<td>3</td>
<td>Utökad (VK1) Kort (VK3)</td>
<td>Augusti (1ggr) Högflöden (2 ggr)</td>
<td>Sjömitt Utlopp</td>
<td>*</td>
<td>16</td>
</tr>
<tr>
<td>Målvattendrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Kort (VK3)</td>
<td>Högflöden</td>
<td></td>
<td></td>
<td>* 62</td>
</tr>
<tr>
<td>7</td>
<td>Utökad (VK2)</td>
<td>Augusti (1ggr) Högflöden (6 ggr)</td>
<td></td>
<td>*</td>
<td>25</td>
</tr>
<tr>
<td>Styropunkter sjöar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kort (VK3)</td>
<td>Högflöden</td>
<td></td>
<td></td>
<td>Nej 56</td>
</tr>
<tr>
<td>Styropunkter vattendrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kort (VK3)</td>
<td>Högflöden</td>
<td></td>
<td></td>
<td>Nej 57</td>
</tr>
<tr>
<td>Referensvattendrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Utökad (VK2)</td>
<td>Augusti (1ggr) Högflöden (6 ggr)</td>
<td></td>
<td>Ja</td>
<td>6</td>
</tr>
</tbody>
</table>

- Om pH-målet är 5,6 eller dålig måluppfyllelse hos fisk.

7.1.1 Vattenkemisk måluppfyllelse

Jönköpings län har formulerat 363 vattenkemiska målsättningar. Kopplat till dessa finns 342 målsättningspunkter i sjöar och vattendrag, där uppföljning av målen görs. Totalt finns målsättningar formulerade för 1 040 km vattendrag och 330 km² sjöytan.

Figur 7-1 visar måluppfyllelsen 2005 vid målsättningslokalerna. I sjöarna är målet uppfylt i 81 % av antalet sjöar vilket utgör 96 % av den sammanlagda sjöytan. I vattendragen är målen uppfyllda på 81 % av den sammanlagda vattendragslängden (Tabell 7-3).
Tabell 7-2. Ingående parametrar i kort respektive utökad parameterlista.

<table>
<thead>
<tr>
<th>Parametrar</th>
<th>Kort (VK3)</th>
<th>Utökad (VK1-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Alkalinitet</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Konduktivitet</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Sulfat</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Kalcium</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Absorbans</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Färg</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>TOC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grumlighet/Turbiditet</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Totalfosfor</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Totalkväve</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Nitratkväve</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Natrium</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Kalium</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Klorid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siktdjup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrgas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Vattendrag</th>
<th>Längd (km)</th>
<th>Sjöar</th>
<th>Sjöyta (km²)</th>
<th>Antal sjöar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej uppfylt</td>
<td>152 (15 %)</td>
<td>Ej uppfylt</td>
<td>8,8 (3 %)</td>
<td>31 (14 %)</td>
</tr>
<tr>
<td>Uppfylt</td>
<td>843 (81 %)</td>
<td>Uppfylt</td>
<td>318,8 (96 %)</td>
<td>175 (82 %)</td>
</tr>
<tr>
<td>Kan ej bedömas</td>
<td>45 (4 %)</td>
<td>Kan ej bedömas</td>
<td>2,5 (1 %)</td>
<td>9 (4 %)</td>
</tr>
</tbody>
</table>

Figur 7-1. Måluppfyllelse i vattenkemiska målpunkter 2005.

7.2 Biologi

7.2.1 Bottenfauna

Bottenfauna har under oktober 2005 undersökt på 46 lokaler i rinnande vatten inom kalkningens effektuppföljning och den regionala miljöövervakningen. 8 lokaler var okalkade. Av de 38 kalkade lokalerna var 16 lokaler obetydligt försurningspanverkade (42%). Resten var mer eller mindre försurningspanverkade (Figur 7-3).

Resultaten från 2005 visade på en fortsatt obetydlig försuringspanverkan på 18 av 20 redan tidigare goda lokaler. Många lokaler visade dock fortsatt försurningspanverkan i olika grad, trots kalkningsinsatser. Figur 7-4 illustrerar att dessa lokaler framförallt påträffades i Lagans och Nissans vattensystem.


7.2.2 Kräftprovfiske


2005 års kräftprovfiske genomfördes under augusti-september, i linje med Naturvårdsverkets "Handbok för miljöövervakning". De 19 lokaler som Länsstyrelsen provfiskade var fördelade över hela länet (Figur 7-5).
Kräftprovfisket genomfördes inom ramen för biologisk återställning och för att följa upp kalkningen i länet. Lokalerna provfiskades för att utreda möjliteaterna till återintroduktion av flodkräftrar och för att kontrollera redan genomförda utsättningar eller befintliga bestånd. Sex av de provfiskade lokalerna visade sig hyssa flodkräftrar, fem lokaler hade signalkräftrar, två lokaler hade både flod- och signalkräftrar medan sex lokaler inte hade någon kräftfångst alls.

Fångstresultatet visar att flodkräftbestånden är svaga på fyra av lokalerna, och bra på fyra lokaler. I Fjärrasjön, som hyser både flod- och signalkräftrar, har flodkräftan starkt övertag. Däremot i Fagerhultasjön är det signalvätskans som tar över mer och mer.

7.2.3 Nätprovfiske

7.2.3 Nätprovfiske

Nätprovfiske genomfördes under juli och augusti 2005 i 24 sjöar i länets västra och södra delar. 12 sjöar bedömdes vara obetydligt försurningspåverkade och övriga försurningspåverkade i olika omfattning (Figur 7-6).


Klass 1: Fiskbestånden uppvisar inte några störningar som kan relateras till försurningspåverkad vattenkvalitet de senaste tre till fem åren.
Klass 2: Försurningskänsliga arter (ex. mört) uppvisar reproduktionsstörningar.
Klass 3: Försurningskänsliga arter (ex. mört) har helt upphört att reproduceras.
Klass 4: Försurningskänsliga arter har helt försvunnit men där det nuvarande fiskbeståndet inte uppvisar störningar som kan relateras till försurningspåverkad vattenkvalitet de senaste tre till fem åren.
Klass 5: Försurningskänsliga arter har helt försvunnit och nuvarande fiskbestånd uppvisar reproduktionsstörningar.

<table>
<thead>
<tr>
<th>Sjönamn</th>
<th>Provfiskedatum</th>
<th>Fångade arter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Björsbosjön</td>
<td>2005-07-18</td>
<td>Abborre, mört</td>
</tr>
<tr>
<td>Bråarpasjön</td>
<td>2005-07-25</td>
<td>Abborre, mört, gädda, braxen, gers, sutare</td>
</tr>
<tr>
<td>Flaten</td>
<td>2005-07-20</td>
<td>Abborre, mört, gädda, braxen gers, benlöja, siklöja, lake</td>
</tr>
<tr>
<td>Fryebosjön</td>
<td>2005-07-26</td>
<td>Abborre, mört, gädda, braxen</td>
</tr>
<tr>
<td>Gunnen</td>
<td>2005-08-02</td>
<td>Abborre, mört, gädda, braxen, gers, benlöja</td>
</tr>
<tr>
<td>Hagasjön</td>
<td>2005-07-27</td>
<td>Abborre, mört, gädda, braxen gers</td>
</tr>
<tr>
<td>Häpplingen</td>
<td>2005-07-12</td>
<td>Abborre, mört, gädda, sutare</td>
</tr>
<tr>
<td>Illeråsasjön</td>
<td>2005-08-08</td>
<td>Abborre, mört, gädda, lake</td>
</tr>
<tr>
<td>Kroksjön</td>
<td>2005-07-27</td>
<td>Abborre, mört</td>
</tr>
<tr>
<td>Kyrkesjön</td>
<td>2005-08-09</td>
<td>Abborre, mört, braxen, siklöja</td>
</tr>
<tr>
<td>Lagårdsjön</td>
<td>2005-07-18</td>
<td>Abborre, mört, gädda</td>
</tr>
<tr>
<td>Ljungsjön</td>
<td>2005-08-03</td>
<td>Abborre, mört, gädda</td>
</tr>
<tr>
<td>Långvattnet</td>
<td>2005-07-11</td>
<td>Abborre</td>
</tr>
<tr>
<td>Mosjön</td>
<td>2005-07-20</td>
<td>Abborre, mört, gädda, braxen, sutare, benlöja</td>
</tr>
<tr>
<td>Mosisjön</td>
<td>2005-07-13</td>
<td>Abborre, gädda</td>
</tr>
<tr>
<td>Mulserydssjön</td>
<td>2005-08-01</td>
<td>Abborre, mört, gädda, braxen, lake, siklöja</td>
</tr>
<tr>
<td>Prostsjön</td>
<td>2005-08-22</td>
<td>Abborre, mört, gädda, braxen</td>
</tr>
<tr>
<td>Smörhultasjön</td>
<td>2005-08-10</td>
<td>Abborre, mört, braxen</td>
</tr>
<tr>
<td>Stumsjön</td>
<td>2005-08-01</td>
<td>Abborre, gädda</td>
</tr>
<tr>
<td>Sulebosjön</td>
<td>2005-07-11</td>
<td>Abborre, mört, gädda, sutare</td>
</tr>
<tr>
<td>Svinsjön</td>
<td>2005-07-13</td>
<td>Abborre, mört, gädda</td>
</tr>
<tr>
<td>Öregöl</td>
<td>2005-07-14</td>
<td>Abborre, mört</td>
</tr>
<tr>
<td>Örsjön</td>
<td>2005-08-11</td>
<td>Abborre, mört, gädda, braxen</td>
</tr>
<tr>
<td>Östersjön</td>
<td>2005-07-12</td>
<td>Abborre, gädda</td>
</tr>
</tbody>
</table>

7.2.4 Elfiske

För att följa upp effekterna på fiskfaunan i kalkade vattendrag utförs regelbundet elfiskeundersökningar. Öring, elritsa samt signal- och flodkräfta är försurningskänsliga och förekomsten av dessa är intressant ur försurningssynpunkt.

År 2005 elfiskades 88 lokaler i länet (se karta i Figur 7-7) varav 77 lokaler inom kalkeffektuppföljningen och 11 inom regional- och nationell miljöövervakning. Elfisket utfördes under augusti månad med standardiserad elfiskemetod. Nederbördern var stor under undersökningsperioden och på vissa lokaler medförde det höga flödet att fångsteffektiviteten försämrades. 41 av lokalerna inom kalkeffektuppföljningen (53 %) bedömdes som obetydligt försurningspåverkade. Övriga 36 lokaler var försurningspåverkade i varierande grad (Figur 7-7).
Figur 7-7 Bedömning av försurningspåverkan vid alla elfiskade lokaler augusti 2005.


På samtliga elfiskade lokaler påträffades totalt 14 fiskarter inklusive flod- och signalkräfta. De vanligast förekommande fiskarterna var öring (som noterats på 75 % av antalet lokaler), elritsa (38 %), signalkräfta (24 %) samt lake (23 %). Antal arter per lokal varierade mellan 0 och 6. Fisk och kräfta saknades helt på tre lokaler.

Öringstätheterna varierade mycket mellan de undersökta vattensystemen (Figur 7-9). Skillnaden orsakas av differenser i vattnets näringsinnehåll och graden
av störningar på fiskbestånden. Störningar på fiskbestånden beror i första hand på försurningssituationen, men även på mänsklig påverkan exempelvis anläggande av vandringshinder och rensningsarbete. Det är också stora skillnader mellan lokaler med vandrande, jämfört med stationära, öringbestånd. Den höga tätheten i Motala ströms vattensystem beror framförallt på sjövandrande öringbestånd i Vätterns tillrinningsområde.

Figur 7-9. Beräknad medeltäthet av öringungar per huvudavrinningsområde.

### 7.2.5 Biologisk måluppfyllelse

Under 2005 var den biologiska målsättningen med kalkningen uppnådd i 64 % av längden vattendrag som undersökt och i 55 % av den sjöyta som undersökt under året (Tabell 7-5). Av den totala längden vattendrag och ytan sjöar är det en mindre del som undersöks under ett år. Biologiska undersökningar är dyra och går med glesa intervall i jämförelse med vattenkemiska undersökningar. Måluppfyllelsen för biologin är generellt lägre än för vattenkemin då det tar lång tid för biologin att återhämta sig efter en försurningsskada.


<table>
<thead>
<tr>
<th>Vattendrag Måluppfyllelse</th>
<th>Längd (km)</th>
<th>Sjöar Måluppfyllelse</th>
<th>Sjöyta (km²)</th>
<th>Antal sjöar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ej uppfyllt</td>
<td>206</td>
<td>Ej uppfyllt</td>
<td>4,6 (46 %)</td>
<td>10 (45 %)</td>
</tr>
<tr>
<td>Uppfyllt</td>
<td>372</td>
<td>Uppfyllt</td>
<td>5,5 (54 %)</td>
<td>12 (55 %)</td>
</tr>
<tr>
<td>Ej undersökt/</td>
<td>1110</td>
<td>Ej undersökt/</td>
<td>3234</td>
<td>195</td>
</tr>
<tr>
<td>kan ej bedömas</td>
<td></td>
<td>kan ej bedömas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figur 7-10 visar summerad måluppfyllelse för det biologiska livet i sjöarna under 2005. Den var anmärkningsvärt låg då ovanligt många av de sjöar som nätprovfiskades under året bedömdes som påverkade av försurning (se avsnitt 7.2.3).
Det är dock vanskligt att jämföra måluppfyllelsen för biologin årsvis då de flesta sjöarna undersöks med glesa intervaller (vart tionde eller vart femte år) och försurningspåverkade sjöar undersöks tätare än icke påverkade. Räknar man istället måluppfyllelsen för sjöarna på den senaste undersökningsåret ligger måluppfyllelsen på ca 90 % av sjöytan och 75 % av antalet sjöar.

![Diagram](image)


Figur 7-11. Måluppfyllelsen i de vattendrag som undersökts av länets ca 170 mil vattendrag som ingår som målområden i länets kalkningsverksamhet. Merparten vattendragslängd med ”okänt resultat” har ej undersöks det aktuella året.

Mörtar är känsliga för försurning. (Foto: Tobias Haag.)
8 Kalkningsplanering/utvärdering

8.1 Åtgärdsplanen för kalkning, ett levande dokument

Under 2005 reviderade länsstyrelsen den regionala åtgärdsplanen för kalkning efter synpunkter från Naturvårdsverket som sedan har godkänt den reviderade planen.

Länets åtgärdsplan för kalkning innehåller beskrivning av försurningsläget och strategier för åtgärder och uppföljning. Den största delen upptas av en beskrivning per åtgärdsområde med uppgifter om varför man kalkar, hur mycket man har kalkat och planerar att kalka per objekt samt vilken uppföljning som bedrivs i området.

Den största förändringen som revideringen innebar var att flera åtgärdsområden har slagits ihop till att ingå i större områden. Syftet har varit att få en bättre helhetsbild av kalkningsplaneringen inom ett avrinningsområde och bättre kunna planera kalkbehovet i de nedre delarna av ett avrinningsområde som påverkas av all den kalkning som sker uppströms. I flera fall har de ”gamla” åtgärdsområdena be- hållits som delområden i det nya åtgärdsområdet. Delområdena kan ha olika kommuner som huvudman men en av kommunerna har tagit på sig samordningsansvaret för det nya ”storåtgärdsområdet”.

Större genomgripande utvärderingar av kalkningsåtgärderna sker numera per huvudavrinningsområde. Under 2005 utvärderades kalkningarna i Emåns, Svartåns och Mörrumsåns huvudavrinningsområden och under 2006 skall kalkningarna i Lagan och Helgeå utvärderas.


8.2 Högflödesprovtagnings

Försurningssituationen i vattnet påverkas av många olika faktorer, bland annat aktuellt flöde. Tidigare genomfördes vattenkemisk effekttuppföljning av kalkningsverksamheten enligt förutbestämt provtagningsschema och oberoende av aktuella flö-

Två frågeställningar infinner sig: 1) Har ambitionen att pricka in provtagning i samband med högflöden lyckats? 2) Har detta lett till att den vattenkemiska målsättningen inte nås i samma utsträckning som tidigare? För att undersöka detta har medelvattenföring per dygn vid Hulubäcken (mätt av SMHI) jämförts med provtagning på tre närbeliggande lokaler; Nissan vid Svinhult, Sågån Mullerydssjöns inlopp och Älgån Klerefors. Hulubäcken, som ligger i nordvästra delen av lännet, tillhör Nissans avrinningsområde. Bäckens genomsnittliga vattenföring per dygn under de senaste fem åren har varit cirka 0,08 m³/s, med något lägre värden de två första åren än de två senaste (0,08 m³/s under 2001-02 och 0,09 m³/s under 2004-05). Högsta flödet under 2000-05 är 1,59 m³/s, vilket noterades i februari 2004. Som jämförelse kan nämnas att i samband med översvämningarna i juli samma år var flödet 1,2 m³/s. Det bör poängteras att aktuell vattenföring i små flöden kan visa stor variation från ett avrinningsområde till ett annat beroende på annorlunda förutsättningar att hålla kvar vattnet (marktäcke, våtmarker, vegetation etcetera). I dessa fall har dock en jämförelse med Hulubäcken bedömts adekvat.


Figur 8-3 visar att detta medfört generellt lägre värden avseende pH och alkalinitet (linjerna i de högra diagrammen visar lägre nivåer än i de vänstra). Grovt räknat har uppmätta pH-värdena varit 0,4 enheter lägre och uppmätt alkalinitet 0,1 mekv/l lägre under 2004-05 än under 2001-02. Samtidigt har medelvattenföringen per dygn visat 0,1-0,2 m³/s högre värdena de dygn som provtagning utförts under de senaste två åren. Skillnaden kan te sig liten men procentuellt sett är den stor, 100 till nästan 600 %. Måluppfyllelsen, det vill säga antalet tillfällen då pH-värdet varit under målsättningen (pH 6 i dessa vattendrag) har inte minskat trots att provtagningen nu har skett vid högre flöden, vilket gett lägre pH-värden.
Svaret på de två frågorna ovan är således att i dessa två vattendrag i närheten av Hulubäcken har andelen högflödesprovtagningar ökat och detta har medfört generellt lägre värden för pH och alkalinitet. Detta är ett exempel på hur förändrad provtagsningsstrategi har påverkat resultaten. Resultaten kan se annorlunda ut på andra håll i länet och naturligtvis även påverkas av andra förhållanden i miljön, till exempel aktuell belastning av försurande nedfall. På dessa två lokaler har kalkningsinsatserna hela tiden varit desamma. För att nå ambitionen med högflödesprovtagning krävs ett flexibelt provtagsningsschema. Provtagna måste vara beredda att rycka ut med kort varsel när man kan förvänta sig höga flöden. Detta kan vara svårt
i allt mer slimmade organisationer. Arbetet skulle underlättas av att fler personer är insatta och kan delta i det praktiska arbetet med provtagning.

Figur 8.3. Uppmätta värden för pH och alkalinitet vid tre lokaler i närheten av Hulubäcken under 2001-02 när provtagning gjordes på förutbestämda dagar och 2004-05, när provtagning i samband med högflöden eftersträvades.

8.3 Effekter av surstötter


Resultatet visar att pH-värdet sjönk med mer än en enhet (alltså 10 gånger surare) på två dagar. Variationen i surhet var större i det kalkade vattendraget än i det okalkade. Kalkningen hade effekt i det kalkade vattendraget. Utan kalkningen hade pH troligen varit ännu lägre men nuvarande kalkning var långt ifrån tillräcklig för att undvika kritiska nivåer på pH.

Halterna av bufferande kalcium och magnesium sjönk på grund av urspändning när flödet ökade. Halten av för-surande sulfat minskade också med ökat flöde men minskningen var inte så stor som för de bufferande ämnena. Detta beror på att den
Smältande snö troligen innehöll en hel del sulfat. Halterna av sulfat med icke marint ursprung var höga, speciellt i den okalkade Helgaboån.

Surstötar är vanligt förekommande i vattendrag som enbart åtgärdas med sjökalkning, speciellt när det blir långa avstånd upp till närmast kalkade sjö eller när sjöarna har korta omsättningstider. Vätmarkskalkning eller doserarkalkning är bättre metoder för att undvika surstötar i vattendrag.


**Surstöt**

Vid snösmältningen på våren frigörs mycket försurande ämnen som lagrats i snön. Dessutom späder smältvattnet ut och minskar koncentrationen av de buffranda ämnen som motverkar försurning i ett vatten. Denna kraftiga sänkning av pH-värdet kallas surstöt. Surstötar vid snösmältning är ofta kraftigare än vad fallet är efter mycket regnande eftersom sulfat, som finns lagrat i snön och har deponerats under en längre tid, smälter ut tidigt under snösmältningen.

**Surstötar noteras ofta i samband med snösmältning. Foto: Tobias Haag**
8.4 Kalkning i Emån, Mörrumsån och Svartån, 2002-04

Kalkningsverksamheten i länets delar av Emåns, Mörrumsåns och Svartåns avrinningsområden har utvärderats (8) och visar till stora delar (90 %) uppfylld målsättning. Tidigare utvärderingar har gjorts kommunvis vart tredje år. Fortsättningsvis kommer rapporter istället sammanställas för olika avrinningsområden.

Rapporten omfattar 18 olika åtgärdsområden med uttalad målsättning. I två av dessa finns målsättningar som inte blivit uppfyllda medan ett åtgärdsområde har en målsättning som inte gick att bedöma. För samtliga övriga 15 åtgärdsområden har målsättningen varit uppfylld. Totalt berör 85 uttalade mål 1900 ha sjöyta och nästan 12 mil rinnande vatten. Målsättningen har varit uppnådd på 76 av dessa punkter (89 %), inte uppnådd på 4 stycken (5 %) och resterande 5 målsättningar (6 %) har inte gått att bedöma. Icke uppfylld målsättning gäller högt upp i respektive avrinningsområde och berör både vattenkemiska och biologiska förhållanden.

Figur 8-5 visar att målsättningen inte varit uppfylld i Sågån/Nödjehultaån i norr, där bottenfauna och fisk fortfarande visar försurningsrelaterad påverkan. Vidare gäller att vattenkemisk målsättning inte varit uppfylld i Gårdvedaån uppströms sjön Säljen (rinnsträcka i söder). Det tredje området där målsättningen inte varit uppfylld är sjön Vigotten (nedströms Säljen), där mörten inte tycks reproduera sig.

Figur 8-5. Måluppfyllelse i respektive målområde. Grönt = samtliga delmål uppfyllda och rött = något av delmålen ej uppfylt.

Under 2005 spreds 1000 ton kalk i området. För ett antal åtgärdsområden har förändringar i form av förtätat kalkningsintervall samt minskade kalkmängder föreslagits. En kombination med nuvarande kalkning i sjöar och våtmarker och spridning av aska och kalka i skogsmark borde vara lämplig för flera åtgärdsområden.
9 Effekter av stormen Gudrun


9.1 Kväve

Sannolikt kommer arealförluster av kväve från skogsmark i södra Sverige att öka. I samband med stora arealer stormfälld skog minskar vegetationens möjligheter att utnyttja det kväve som deponeras från atmosfären och som sedan tidigare finns lagrat i marken efter flera år med förhöjd kvävebelastning. Förhöjda arealförluster av kväve från skogsmarken kommer att bidra till ökade kvävehalter i omgivande sjöar och vattendrag och till slut nå kvävekänsliga kustområden. Effekten kommer sannolikt att vara som störst efter 1-3 år och därefter avta i samband med att ny vegetation etableras. För hela stormområdet har kväveutlakningen beräknats öka med 70 % (genomsnitt för oorganiskt kväve under fem år) men med stora skillnader mellan olika områden. Som exempel kan nämnas 30 % inom Emåns avrinningsområde, förhållandevis liten areal stormfälld skog, och 82-152 % inom Lagans och Nissans avrinningsområden med betydligt större arealer stormfälld skog (9).

9.2 Humus och kvicksilver

Rotvältor och den stora andelen bar jord detta medförde, samt markskador i samband med upparbetning av fallen skog kan även medföra onormala arealförluster av humus och kvicksilver. Ytavrinningen kan dessutom förväntas öka från stormskadade områden och effekten accentueras av att grundvattennivån var högre än normalt. Som genomsnitt för det stormdrabbade området har kvicksilverutlakningen som genomsnitt för fem år efter stormen beräknats öka med 3 % för totalkvicksilver och 11 % för metylkvicksilver. Även här är beräknad utlakning betydligt mindre inom Emåns avrinningsområde (2 respektive 7 %) jämfört med Lagans och Nissans avrinningsområden (cirka 5 respektive 20 % i båda två) (9). Utlakningen av kvicksilver bedöms ha ett snabbare, men mer långvarigt, förlopp än utlakningen av kväve.

9.3 Försurning

I samband med de kraftiga sydvästliga vindarna fördes stora mängder havssalt in över landet och deponerades på marken. Deposition av havssalt kan i försurade om-
råden medföra en omfördelning av ämnen som i sin tur leder till surstötar i markvatten, grundvatten och omkringliggande vattendrag. Detta kan ske när sura vätejoner som finns upplagrade på markpartiklarna ersätts av natriumjoner, som finns i havssalt och deponeras i samband med västliga stormar. Effekten kommer sannolikt att vara snabbare än för kväve men bestå under ungefär lika lång tid framöver beroende på vilka markförhållande som råder i området.

9.4 Timmerterminaler

En sekundär effekt av stormen är att stora mängder timmer har lagrats i så kallade timmerterminaler (Figur 9-1). På cirka 150 upplag i Götaland finns kapacitet att lagra 12,5 miljoner m³ timmer (fast under bark). Timret bevattnas normalt under perioden april-oktober och detta har främst påverkat halterna av fosfor och organiskt material nedströms anläggningsarna. Däremot verkar inte pH-värdena i avrinnande vatten från terminalerna ha minskat i befarad utsträckning (9). Det finns även cirka 15 landterminaler för massaved, men dessa bevattnas inte.

Figur 9-1. För att behålla kvaliteten på det stormfällda timret bevattnas det under sommarhalvåret. Viktigt i samband med lokaliseringen av terminalerna är närhet till bra vägränt, större vattendrag och det stormdrabbade området samt att man har tillgång till elektricitet och passande markområde. (Foto: Per-Erik Larsson)
10 Exempel på resultat av kalkning

10.1 Nissanöringen leker i Krakhultabäcken igen

Krakhultabäcken är ett litet biflöde till Nissan i Jönköpings kommun. Öring från Nissan kan vandra upp i bäcken för att leka på hösten. Öringynglen kläcks sedan på våren efter leken och lever 2-3 år i bäcken innan de vandrar ut i Nissan för att växa till sig (Figur 10-1). Sedan återkommer de till sin ”modersbäck” efter några år för att leka. Små biflöden som Krakhultabäcken kan vara mycket produktiva och viktiga för fiskfaunan i vattendrag längre nedströms.

Figur 10-1. Öring. (Foto: Per-Erik Larsson)

Krakhultabäcken var kraftigt försurat, med pH strax över 4, innan kalkning-
en startade. Sedan 1993 har bäcken åtgärdat genom våtmarkskalkning (Figu 10-2). Detta fick omedelbar effekt då man redan året efter för första gången kunde konsta-
tera öringreproduktion i bäcken. De senaste åren har tätheten av årsungar varit för
regionen mycket god med undantag av 2003 då flödena vid undersökningen var
höga och fiskeförhållandena dåliga. Påverkan av surstötter kan dock inte uteslutas
vissa år (Figu 10-3).

![Öringtäthet Krakhultabäcken](image)

Figu 10-3. Täthet av öring, årsungar (0+) och äldre (>0+), vid elfiskeundersökningar på
lokalen vid mynningen i Krakhultabäcken. Den lodrätta linjen markerar starten för kalk-
ningen 1993.

10.2 Fler arter och mindre försurningspåverkan på botten-
fauna i Väster- och Österårn

Väster- och Österån i Vaggeryds kommun är källflöden till sjön Bolmen. Åarna lig-
ger inom ett försurningskänsligt område där försurning gjorde att mörtlen slogs ut
i de flesta av sjöarna. Områdets sjöar började kalkas 1983 då pH-värdet i områdets
vatten var 4,2-5,0. 1987 utökades kalkningen till att omfatta fler sjöar och ett stort
antal våtmarker.

Kalkningarna har gjort att bottenfaunan som undersöktes första gången 1987
har gått från att vara starkt eller mycket starkt påverkad av försurning till att nu be-
dömas som ej eller obetydligt påverkat av försurning. Figur 10-4 visar att artantalet
har ökat från i medeltal 22 arter 1987 till 34 arter 2003. Vid senaste undersöknings-
tillfälle 2005 var artantalet i medel 27 (Figu 10-5).
Figur 10-4. Resultat av bottenfaunaundersökningar på sex lokaler i Väster- och Österån. Surhetsindex 0-4 = Stark eller mycket stark påverkan, 4-6 = Betydlig påverkan och >6 = Ingen eller obetydlig påverkan.

Figur 10-5. Provtagning av bottenfauna. (Foto: Tobias Haag)
11 Aska och kalk i skogen


För försumrade sjöar och vattendrag är det mycket positivt med askåterföring och skogsmarkskalkning. Mindre vattendrag som idag inte går att behandla med de traditionella metoderna sjö- eller vätmarkskalkning skulle på sikt kunna få en bättre vattenstatus som skogsmarken kalkades. För de vatten som redan idag kalkas skulle kalkdoseringen kunna minska och förhoppningsvis skulle man kunna sluta med kalkningen tidigare efter genomfördes engångsbehandling av skogsmarken.

11.1 Skogskalkning – inget nytt


Sedan början av 1990-talet har 25 000 ton kalk eller aska spridits på sammanlagt 7 300 hektar skogsmark i Jönköpings län (Figur 11-1). Vanligaste metoden har varit att sprida en blandning av lika delar aska och kalk med en skotattraktor. Dosen har då varit två ton aska och två ton kalk per hektar (Figur 11-2).

![Figur 11-1. Hektar skogsmark som årligen behandlats med aska eller kalk per år i Jönköpings län. Data från Skogsstyrelsen.](image-url)
Antal hektar som behandlats i Jönköpings län

Data om genomförd kalkning och askning på skogsmark finns nu samlad i en databas med tillhörande kartskikt hos Skogsstyrelsen (Figur 11-3). Detta kommer att vara värdefull information vid utvärdering och planering av kalkningsinsatser för sjöar och vattendrag framöver.

11.2 Behandling av hela avrinningsområden är nytt


Norra Unnarydsbäckarna ingår i ett nationellt projekt som Skogsstyrelsen driver för att ytterligare testa och utvärdera kalkningsmetoder för skogen. Projektet har blivit möjligt sedan 10 miljoner årligen under en treårsperiod har avsatts från Naturvårdsverkets anslag för kalkning av sjöar och vattendrag.

Länsstyrelsen kommer tillsammans med kommunerna under 2006 arbeta med att peka ut lämpliga områden för behandling med aska och kalk. Prioriteringsgrunder kommer att vara:

- Områden med hög andel mindre vattendrag och sjöar med kort omsättningstid, där traditionella kalkningsmetoder inte fungerar tillfredsställande.
- Områden där dagens kalkning för sjöar och vattendrag fungerar dåligt.
- De mest försurningskänsliga områdena (främst i länets sydvästra del).

Figur 11-4. Spridning av aska med traktor (Foto: Tobias Haag)
12 Referenser

Nyckeltalsredovisning budgetåret 2005
Jönköpings län

Nycktal 1a: MÅLUPPFYLLELSE

<table>
<thead>
<tr>
<th>VATTENKEMI:</th>
<th>Målet uppfyllt</th>
<th>+ Målet ej uppfyllt</th>
<th>+ Okänt resultat</th>
<th>Totalt kalkt = målområden i länet</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-mål</td>
<td>5.6 6.0 6.3</td>
<td>5.6 6.0 6.3</td>
<td>5.6 6.0 6.3</td>
<td>5.6 6.0 6.3</td>
</tr>
<tr>
<td>Vattendrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Längd:</td>
<td>64,37 750,85 28,06</td>
<td>+ 3,43 148,08 0</td>
<td>+ 0 45,49 0</td>
<td>= 67,8 944,42 28,06 km</td>
</tr>
<tr>
<td>Sjöar</td>
<td>1 173 1</td>
<td>+ 0 31 0</td>
<td>+ 0 9 0</td>
<td>= 1 213 1 st</td>
</tr>
<tr>
<td>Yta:</td>
<td>0,54 135,28 183</td>
<td>+ 0 8,75 0</td>
<td>+ 0 2,5 0</td>
<td>= 0,54 146,53 183 km2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOLOGI:</th>
<th>Målet uppfyllt</th>
<th>+ Målet ej uppfyllt</th>
<th>+ Okänt resultat</th>
<th>Totalt kalkt = målområden i länet</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-mål</td>
<td>5.6 6.0 6.3</td>
<td>5.6 6.0 6.3</td>
<td>5.6 6.0 6.3</td>
<td>5.6 6.0 6.3</td>
</tr>
<tr>
<td>Vattendrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Längd: 7,3 251,2 8,76</td>
<td>+ 18,8 147,8 0</td>
<td>+ 41,6 545,3 19,3</td>
<td>= 67,8 944,42 28,06 km</td>
<td></td>
</tr>
<tr>
<td>Sjöar</td>
<td>0 12 0</td>
<td>+ 0 10 0</td>
<td>+ 1 191 1</td>
<td>= 1 213 1 st</td>
</tr>
<tr>
<td>Yta:</td>
<td>0 5,51 0</td>
<td>+ 0 4,56 0</td>
<td>+ 0,54 136,5 183</td>
<td>= 0,54 146,53 183 km2</td>
</tr>
</tbody>
</table>

Kommentar: ____________________________________________________________
Nyckeltalsredovisning budgetåret 2005

Jönköpings län

### Nycktal 1b: AKTUELLA KALKNINGSOBJEKT

<table>
<thead>
<tr>
<th></th>
<th>Sjö</th>
<th>Vattendrag</th>
<th>Våtmark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yta</td>
<td>antal</td>
<td>längd</td>
</tr>
<tr>
<td>Enbart åtgärdsobjekt</td>
<td>57,64 km2</td>
<td>326,00 st</td>
<td>0,00 km</td>
</tr>
<tr>
<td>Målområden: kalkade</td>
<td>99,75 km2</td>
<td>163,00 st</td>
<td>0,00 km</td>
</tr>
<tr>
<td>ej kalkade</td>
<td>217,54 km2</td>
<td>50,00 st</td>
<td>1 030,00 km</td>
</tr>
<tr>
<td>Summa</td>
<td>374,93 km2</td>
<td>539 st</td>
<td>1 030,00 km</td>
</tr>
<tr>
<td>Därav kalkade med doserare</td>
<td>1 st</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### AVSLUTADE KALKNINGSOBJEKT

<table>
<thead>
<tr>
<th></th>
<th>Sjö</th>
<th>Vattendrag</th>
<th>Våtmark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yta</td>
<td>antal</td>
<td>längd</td>
</tr>
<tr>
<td>Enbart åtgärdsobjekt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Målområden: kalkade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ej kalkade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summa</td>
<td>0,00 km2</td>
<td>0 st</td>
<td>0,00 km2</td>
</tr>
<tr>
<td>Avstängda/skrotade doserare</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nyckeltalsredovisning budgetåret 2005
Jönköpings län

Nyckeltal 2: TOTALA KOSTNADER (exkl moms)

<table>
<thead>
<tr>
<th></th>
<th>Totalkostnad</th>
<th>Varav egeninsats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologisk återställning:</td>
<td>1095 tkr</td>
<td>79 tkr</td>
</tr>
<tr>
<td>Huvudmännens administration</td>
<td>19 284 tkr</td>
<td>436 tkr</td>
</tr>
<tr>
<td>Vattenkemisk effektuppföljning</td>
<td>717 tkr</td>
<td>0 tkr</td>
</tr>
<tr>
<td>Biologisk effektuppföljning:</td>
<td>914 tkr</td>
<td>0 tkr</td>
</tr>
<tr>
<td>Särskilda projekt:</td>
<td>0 tkr</td>
<td>0 tkr</td>
</tr>
<tr>
<td>Spridningskontroll</td>
<td>12 339 tkr</td>
<td>59 tkr</td>
</tr>
<tr>
<td>Övrigt (specifera)</td>
<td>0 tkr</td>
<td>0 tkr</td>
</tr>
</tbody>
</table>

Kommentarer till punkten Övrigt: ____________________________________________________________
<table>
<thead>
<tr>
<th>Kalkmjöl</th>
<th>Granuler</th>
<th>Grovka płik</th>
<th>Vombgranuler</th>
<th>Grovka płik Fuktad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-0,81 mm</td>
<td>0,1-0,81 mm</td>
<td>0,2-0,81 mm</td>
</tr>
<tr>
<td>Båt:</td>
<td></td>
<td>3999 ton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fordon:</td>
<td></td>
<td>ton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helikopter: Sjö</td>
<td>2289 ton</td>
<td>ton</td>
<td></td>
<td>2 ton</td>
</tr>
<tr>
<td>Våtmark</td>
<td></td>
<td>ton</td>
<td></td>
<td>6165 ton</td>
</tr>
<tr>
<td>Doserare:</td>
<td></td>
<td>289 ton</td>
<td></td>
<td>ton</td>
</tr>
</tbody>
</table>

Kommentarer: 

.................................................................
<table>
<thead>
<tr>
<th></th>
<th>Kalkmjöl</th>
<th>Granuler</th>
<th>Grovkalk 0(0,8)-1 mm</th>
<th>Grovkalk 0,1-(0,8)1 mm</th>
<th>Grovkalk 0,2-(0,8)1 mm</th>
<th>Vombgranuler</th>
<th>Grovkalk Fuktad 0,2-1 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>total-</td>
<td>varav</td>
<td>total-</td>
<td>varav</td>
<td>total-</td>
<td>varav</td>
<td>total-</td>
</tr>
<tr>
<td></td>
<td>kostnad</td>
<td>egensats</td>
<td>kostnad</td>
<td>egensats</td>
<td>kostnad</td>
<td>egensats</td>
<td>kostnad</td>
</tr>
<tr>
<td>Båt:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2386</td>
<td>269</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fordon:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hellikopter:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1944</td>
<td>268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doserare:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spridning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drift/underhåll</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

inköp: 

inköp antal:

Kommentarer: 

________________________________________________________________________________________
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Restaurering av biotoper</td>
<td>1 st</td>
<td>5,23 kr</td>
<td>0,78 kr</td>
<td>5,23 kr</td>
<td>0,78 kr</td>
</tr>
<tr>
<td>Byggande av vandringssvag</td>
<td>11 st</td>
<td>708,30 kr</td>
<td>20,97 kr</td>
<td>709,80 kr</td>
<td>20,97 kr</td>
</tr>
<tr>
<td>Förbättring av vandringssvag</td>
<td>1 st</td>
<td>29,92 kr</td>
<td>4,49 kr</td>
<td>29,92 kr</td>
<td>4,49 kr</td>
</tr>
<tr>
<td>Utrivning av vandringshinder</td>
<td>1 st</td>
<td>240,83 kr</td>
<td>36,13 kr</td>
<td>337,77 kr</td>
<td>50,67 kr</td>
</tr>
<tr>
<td>Vattenreglering</td>
<td>st</td>
<td>tkr</td>
<td>tkr</td>
<td>tkr</td>
<td>tkr</td>
</tr>
<tr>
<td>Återintroduktion 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flodkräfta, 2-3 årig</td>
<td>1 st</td>
<td>12,00 kr</td>
<td>1,80 kr</td>
<td>12,00 kr</td>
<td>1,80 kr</td>
</tr>
<tr>
<td>Övrigt 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Förundersökningar utan särskild koppling till enskild biologisk återställningsåtgärd</td>
<td>1 st</td>
<td>25,00 kr</td>
<td>0,00 kr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>