Nätprovfiske i Rusken 2017
Nätprovfiske i Rusken 2017

Meddelande nr 2018:25
Nätprovfiske i Rusken 2017

Meddelande nummer 2018:25
Referens Rasmus Linderfalk, fiskeenheten, Naturavdelningen. Oktober, 2018
Kontaktperson Rasmus Linderfalk, Länsstyrelsen i Jönköpings län, 010-223 64 84, rasmus.linderfalk@lansstyrelsen.se
Webbplats www.lansstyrelsen.se/jonkoping
Fotografier Rasmus Linderfalk
ISSN 1101-9425
ISRN LSTY-F-M—18/25--SE
Upplaga 25 exemplar.
Tryckt på Länsstyrelsen i Jönköpings län. 2018
Miljö och återvinning Rapporten är tryckt på miljömärkt papper

© Länsstyrelsen i Jönköpings län 2018
Innehållsförteckning

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Sida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammanfattning</td>
<td>6</td>
</tr>
<tr>
<td>Inledning</td>
<td>7</td>
</tr>
<tr>
<td>Metodik</td>
<td>8</td>
</tr>
<tr>
<td>Nätfiskesiteturon och fisketryck</td>
<td>10</td>
</tr>
<tr>
<td>Referenser</td>
<td>40</td>
</tr>
<tr>
<td>Bilaga 1. Jämförelsematerial och standardiserade bedömningsgrunder</td>
<td>41</td>
</tr>
<tr>
<td>Bilaga 2. Övriga parametrar</td>
<td>44</td>
</tr>
<tr>
<td>Bilaga 3. Ekologiskt funktionell kantzon</td>
<td>45</td>
</tr>
<tr>
<td>Bilaga 4. Körskador</td>
<td>47</td>
</tr>
<tr>
<td>Bilaga 5. Återutsättning av fisk</td>
<td>49</td>
</tr>
<tr>
<td>Bilaga 6. Kort om fiskevård</td>
<td>50</td>
</tr>
<tr>
<td>Bilaga 7. Nätfäglingskarta</td>
<td>54</td>
</tr>
</tbody>
</table>

Innehållsförteckning

- **Sammanfattning**
- **Inledning**
- **Metodik**
 - Nätfiskesiteturon och fisketryck
 - Referenser
 - Bilaga 1. Jämförelsematerial och standardiserade bedömningsgrunder
 - Bilaga 2. Övriga parametrar
 - Bilaga 3. Ekologiskt funktionell kantzon
 - Bilaga 4. Körskador
 - Bilaga 5. Återutsättning av fisk
 - Bilaga 6. Kort om fiskevård
 - Bilaga 7. Nätfäglingskarta
Sammanfattning

Inledning

Nätprovfiske är en väl beprövad metodik för att undersöka fiskbestånd i sjöar. Provfisket ger oss en uppfattning om fisksamhällets storlek, artsammansättning och struktur, men även om enskilda arters täthet. Vi får också en uppfattning om populationsstrukturen inom enskilda arter och kan göra en uppskattning av vilka åldersklasser som varit svaga eller kanske saknas helt.

Genom att använda den standardiserade metodiken (SIS, 2015) är det möjligt att jämföra resultatet med andra sjöar som fiskats med samma metodik. Det blir även möjligt att upptäcka förändringar i resultatet mellan olika år. Fiskbestånden fungerar som indikatorer på hur tillståndet i en sjö varit en längre tid och ger en mer rättvisbild än enstaka vattenprover som endast visar ett momentanvärde. Provfiske kan därför ge en bild av o vilken omfattning sjön är påverkad av försurning, eutrofiering (övergödning), giftiga substanser och fysiska miljöstörningar. Fisken intar en central plats i sjöekosystemet och utgör de övre trofiska nivåerna i sjöns näringsväv. Därför är det viktigt att bedöma fisksamhällets status och eventuella förändringar, vilket i sin tur gör det möjligt att utvärdera sjöns allmänna tillstånd. Resultatet kan även användas till förvaltningsarbete och planering av fiskevårdsinsatser.

För att bedöma fisksamhällets status används standardiserade bedömningsgrunder för nätprovfisken i sjöar, EQR8 (Holmgren med flera, 2007). Indexet är baserat på åtta indikatorer vilka man får ut från resultaten i standardiserade provfisken med bottensatta nät. Bedömningen av fisksamhällets status utgör en del av uppföljningen av arbetet med vattendirektivets mål; att skapa god ekologisk och kemisk status i våra vatten. Förutom en statusbedömning kan man genom att granska de olika delindexen i bedömningsgrunderna även få indikationer på vilken påverkan som ligger bakom en statusförsämring. Bedömningsgrunderna är konstruerade så att det främst kan ge indikationer på påverkan av försurning och/eller övergödning (Dahlberg 2007).
Metodik

Nätprovfiske

ÖVERSIKTSNÄT
- 30 m långa, 1,5 m djupa
- 12 olika nätsektioner om vardera 2,5 m
- Maskstorlek mellan 5 och 55 mm
- Bottensatta

Figur 1. Beskrivning av bottensatta översiktsnät.

Nätprovfiskemetodiken innebär att ett bestämt antal översiktsnät slumpas ut över hela sjöns yta och inom olika djupzoner. Antalet nät bestäms av sjöns storlek och maxdjup. Vid provfisket används översiktsnät av typ Norden 12 (se bilden ovan). Redskapen placeras ut på kvällen (17.00-19.00) och vittjas påföljande morgon (07.00-09.00). Fångsten vägs artvis per nät och samtliga individer längdmäts till närmaste halva centimeter (Kinnerbäck, 2001). Samtliga provfiskeuppgifter matas sedan in i en inmatningsformulär i tabasprogrammet Microsoft Access. En extra sektion med maskstorlek 75 mm har sytts på nätet för att större fisk som är intressanta ur fiskesynpunkt, exempelvis gädda och gös, ska kunna fångas. Fiskar fångade i denna sektion har inte tagits med i bedömning av ekologisk status och analyser av fångst per ansträngning, men finns i längdfördelningsdiagrammen och i förekommande fall i ålders- och tillväxtanalyser.

I stora och djupa sjöar används även s.k. pelagiska skötar av typ Norden 11 (Figur 2). Nätten, som är sex meter höga, bojas upp över den djupaste delen av sjön i djupzonerna 0-6 m,
6-12 m och så vidare och är alltså inte bottensatta. Skötar används för att fånga pelagiska fiskarter (till exempel slkoja) och för att få en bild av artsammansättningen även i den fria vattenmassan (Kinnerbäck, 2001).

![Diagram](image)

Figur 2. Beskrivning av pelagiska nät (sköt). Norden 11 är 27,5 meter långa och har 11 olika maskstorlekar, mellan 6,25 och 55 mm i storlek, om vardera 2,5 meter.

Bedömning av ekologisk status och försurning

Utifrån varje provfiskeresultat görs en bedömning av sjöns ekologiska status med avseende på fisk. Vid bedömning av en sjös totala ekologiska status tas hänsyn till många andra biologiska och fysikalisk-kemiska miljöfaktorer, bland annat växtplanktonsamhälle, makrofyter (större växter), bottenfauna, näringsämnen och försurning. Enligt EU:s ramdirektiv för vatten ska alla vattenförekomster (sjöar över 100 hektar) ha god status senast 2020. Normalt är det den faktor som visar på sämst värde som blir utslagsgivande, men i många fall krävs en avgörande expertbedömning för att fastställa en sjös ekologiska status.

Bedömningsgrunderna och dess ingående indikatorer tas upp noggrannare i Bilaga 1.

En bedömning av försurningspåverkan görs för varje sjö utifrån provfiskeresultatet (se Bilaga 2). Om ett fiskbestånd är försurningspåverkat kan detta bland annat visa sig i sviktande reproduktionsframgång hos försurningssänskliga arter (se nedan). Dessutom bedöms kalkningens effekt i förhållande till de uppsatta målen i Länsstyrelsens kalkplan.

Åldersanalys

Åldersprov tas ofta från fiskarter som är intressanta att analysera för sjön i fråga. Oftast rör det sig om mört i sjöar som bedöms vara påverkade av försurning eller abborre och gös i sjöar som är intressanta för fritidsfiske. I sjöar där man genom att studera längdfrekvensfordelningen misstänker försurningspåverkan på populationen kan man sålunda undersöka detta närmare genom en åldersanalys. Då kan man se om vissa åldersklasser saknas i fångsten. Man kan även läsa ”tillbaka” tillväxten hos en art genom att beräkna tillväxten under flera år hos olika individer. Detta ger information om respektive arts tillväxt hos olika årsklasser vilket kan ge information om hur ett fiskbestånd utvecklats.

Figur 3. Otolit från en abborre.

Åldern hos fisk avsätts med årsringar med en bredare tillväxtzon och en smalare vilozon (sommar- respektive vinterringar, se Figur 4). Av praktiska skäl brukar man räkna antalet vinterringar. På t.ex. mört avlägsnas ett antal fjäll bakom bukfenan och eventuellt otoliterna. På abborren avlägsnas opercula (gällocket), sänks ned i hett vatten och rengörs därefter. Försäkrare bestämning tas i vissa fall också otoliter från abborre (se Figur 3).

Bakgrund

Faktorer som påverkar fångst och fiskbestånd

Vattenkvalitetsparametrar, temperatur och väder

I provfiskeutvärderingarna ingår diagram för vattenkvalitet som redovisar tillgängliga data i Länsstyrelsens vattenkemidatabas för pH och alkalinitet samt i vissa fall färgtal (ett mått på vattnets brunhet) och näringsammeshalter. Syrehalter och vattentemperaturmätningar över tid kan också förekomma i de fall data samlats in återkommande och om det bedöms vara av intresse för utvärderingen. Om fisketrycket från fritidsfiske och i förekommande fall även yrkesfiske är stort kan det få negativa effekter på fiskbestånd, vilket också kan påverka fångsten i nätprovfisken. Fiskbestånd påverkas också av biologiska interaktioner mellan olika fiskar, exempelvis genom predation och konkurrens om föda men också av exempelvis predation från fågel och andra landlevande djur. Nedan beskrivs olika parametrar och dess potentiella påverkan på sjöars fiskfauna mer ingående.

PH OCH ALKALINITET

VATTENFÄRG, FÄRGTAL OCH BRUNIFIERING

Vattenfärg är en naturlig företeelse och beror på förekomst av brunfärgade humusämnen samt järn och mangan från skog och våtmarker. Färgtalet varierar under året med de i regel lägsta värdena under vinter/våren (februari-april) och de högsta oftast under senhösten.
Nätprovfiske i Rusken 2017

12

(oktober-november) i samband med riklig nederbörd. Färgtalet varierar naturligt mellan olika år, bland annat beroende på klimat. Humusämnen bildas vid nedbrytning av växter såväl i sjön som i tillrinningsområdet och har stor ekologisk betydelse. Till exempel påverkas såväl näringshalt, ljusklimate, surhetstillstånd samt halter och förekomstformer av metaller.

En del av de vatten som återfinns i skogsmiljöer har alltid varit naturligt mer eller mindre brunfärgade. En ökning av vattenfärgen, så kallad brunfication, har konstaterats i vattendrag och sjöar i norra Europa och särskilt i södra Sverige under de senaste decennierna. Orsaksansbanden är inte helt klargjorda men beror delvis på klimatiska faktorer. En klimatförändring innebär ökad nederbörd och medför högre grundvattennivå. Det leder i sin tur till ökad avrinning från mark och därigenom urlakning av humusämnen från marken till sjön eller vattendraget. Urlakningen förstärks trotsom om nederbörsperioden föregås av torka och lågt grundvatten, vilket gynnar nedbrytningen av organiskt material i markproffilen. Andra orsaker kan vara ökad temperatur, ökad skogsproduktion, ökad andel barrskog i förhållande till jordbruksmark, skogsbruksåtgärder som dikning och markberedning och minskat försurningstryck.

Vid försurning bildar humusämnen partiklar som sedimentera på sjöbotten, därför blir vattnet väldigt klart. Det innebär att det försurade tillståndet i mark och vatten har lett till ”onaturligt” klart vatten i många sjöar. Historisk finner man att sjöar har varit brunare före 1920-talet. Den minskade försurningen kan ha lett till att nedbrytningen av organiskt material inte längre hämmas av försurning utan nu återgått till ett mer ursprungligt tillstånd.

Vid provfisket mäts siktdjupet med en secciskiva (25 cm ) från båtens skuggsida. Mätning av siktdjup ger en fängervisning om vattnets optiska egenskaper och visar hur ljusets nedträngning sammantaget påverkas av vattenfärg och grumlichkeit. Generellt anses siktdjupet motsvara det djup dit ca 10 % av ljuset ovanifrån når och dubbla siktdjupet är ett grovt mått på det så kallade kompensationsdjupet; det djup vid vilket fotosyntes inte förekommer (inga växter etablerar sig).
VATTENTEMPERATUR OCH SYREHALT

Vattentemperaturen är en av nyckelfaktorerna i akvatiska ekosystem och påverkar bl.a. organismers distribution, beteende och metabolism. Vattnets densitet är som högst vid 4°C och minskar med både ökande och minskande temperatur, vilket innebär att vattnet vid botten på en relativt djup sjö ofta är kring 4°C året runt. Då ytvattnet värms upp under varma perioder bildas ofta ett språngskikt (termoklin) vilket medför att två åtskilda vattenlager skapas (epilimnion och hypolimnion, se Figur 5). Under vår och höst kyls ytvattnet ned och sjöns vattenmassor blandas om, vilket medför att bottenvattnet syresätts. Vintertid bildar isen ett ”lock” och vattnet är som kallast vid ytan.

Vattnets syresättning är avgörande för alla organismer och om blandningen av syresatt yt-vatten ned till underliggande vattenlager är nödvändigt för att bottenvåttnade organismer och kallvattenfiskar skall kunna överleva. Syrebrist kan vara ett problem under sommar och vinter, framförallt i näringsrika eller starkt bruna vatten med liten om blandning (se nedan). Ruda och sutare är mycket tåliga mot återkommande syrebrist. Stora mängder ruda och sutare kan tyda på att sjön har återkommande perioder med syrebrist.

Vattens syrehalt och temperatur mäts under provfisket i sjöns djuphåla med en temperatur- och syreelektrod som sänks ned till botten och avläses kontinuerligt med 1 meters intervall. På så vis kan man få fram en tydlig bild över temperatur- och syregradienten i sjön och därmed exempelvis avgöra varför vissa fiskarter endast fångats på vissa djup eller dra slutsatser om var vissa fiskarter uppehåller sig.

![Figur 5. Förenklad skiss över temperatur- och syrehalt i en sjö under sommaren. Ytvattnet (epilimnion) har högst temperatur och är därmed lättare än bottenvattnet (hypolimnion). Mellan dessa lager finns ett språngskikt (termoklin) där temperatur- och syrehalt sjunker drastiskt.](image)

VÄDER

Våren och sommarens karaktär har betydelse för fiskens tillväxt och reproduktionsframgång. Säsonger med en varm försommar och sommar medför hög tillväxt och innebär även att årsynglen blir fängsbara tidigare. Även väderförhållanden under själva provfisket kan påverka resultatet. Lufttryck och väderlek är två parametrar som påverkar fiskens aktivitet. Abrorrfiskar säsom abborre och gös har en sluten simblåsa och kan inte kompensera för...
snabba variationer av tryckförändringar lika bra som andra arter. Detta medför att abborr-
fishkar är mer känsliga för lufttrycksförändringar än andra arter. Snabba lufttrycksföränd-
ringar medför därför ofta att abborrfiskars aktivitet minskar.

NÄRINGSAÄMNESHALTER
Hur stor näringsämnesbelastning en sjö får ta emot beror bland annat på markanvänd-
ningen i sjöns avrinningsområde, samt förekomst av enskilda punktkällor. Ett avrinnings-
område med stor andel jordbruksmark eller tätorter innebär normalt större näringsämnes-
påverkan än ett avrinningsområde dominerat av skogsbruk. Sjöns omsättningstid påverkar
också näringsämneshalten. I en sjö med lång omsättningstid fastläggs normalt större andel
tillförda näringsämnen än i en sjö med kort omsättningstid.

Halterna av näringsämnen, framförallt fosfor, har stor påverkan på sjöns hela ekosystem.
Mera näringsrika sjöar har ofta större produktion av fisk, samt är karpfiskdominerade.
Karpfiskdominansen beror framförallt på en hög produktion av växtplankton och grum-
ling. God tillgång på växtplankton ger i regel mycket föda åt djurplankton, som i sin tur
ajämntgör som föda åt mört, benlöja och andra karpfisksläktningar. Rovfiskarter som gädda
och abborre stöter därför på hård konkurrens när de som små är beroende av samma föda
som karpfisken. Mört är jämfört med abborre en överlägsen predator på djurplankton, inte
minst i grumliga vatten (Persson, et. al., 2011).

En hög primärproduktion innebär också att mängden organiskt material som bryts ned vid
bottnarna ökar. Processen kräver syre, vilket får till följd att syrebrist kan vara ett problem
vid sommar- och vintertid på sjöns djupare bottnar.

Siktförhållandena kan på grund av grumling försämras i näringsrika vatten. Om gös finns
representerad i sjöns fiskfauna gynnas de normalt i konkurrens med gädda och abborre vid
försämrade siktförhållanden. Gösen har bättre syn och är därmed bättre anpassad för jakt i
grumliga vatten.

Sportfiskesituationen och fisketryck
Ett högt fisketryck påverkar sjöns fiskbestånd. Bland annat kan denna påverkan yttra sig i
förändring av den inbördes fördelningen mellan arter eller förändring av storlekssamman-
sättningen eftersom proportionellt fler av de större fiskarna behålls för konsumtion. Rov-
fisk som gädda, abborre och gös är de populäraste fiskarterna för fritidsfiske i södra Sve-
rige, medan oring, harr och röding utgör betydelsefulla arter i norr. Fisket får ofta en direkt
påverkan på sjöns rovfiskbestånd, men en indirekt påverkan på bytesfiskbestånden genom
förändrat predationstryck.
Nätprovfiske i Rusken 2017

Provfiskeutvärdering

Tabell 1. Provfiske- och sjöuppgifter.

<table>
<thead>
<tr>
<th>Sjönamn</th>
<th>X-koordinat (RT90)</th>
<th>Y-koordinat (RT90)</th>
<th>Avrinningsområde</th>
<th>Datum 1:a nätläggningen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rusken</td>
<td>634172</td>
<td>141113</td>
<td>Lagan</td>
<td>20170809</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yttermperatur (C)</th>
<th>Bottenperatur (C)</th>
<th>Siktdjup (m)</th>
<th>Antal bottennät</th>
<th>Antal pelagiska nät</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,5</td>
<td>17,5</td>
<td>3,0</td>
<td>40</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sjöyta (km²)</th>
<th>Maxdjup (m)</th>
<th>Medeldjup (m)</th>
<th>Omsättnings tid (år)</th>
<th>Höjd över havet (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34,6</td>
<td>16,4</td>
<td>3,5</td>
<td>0,53</td>
<td>181</td>
</tr>
</tbody>
</table>

Tabell 2. Sammanfattande tabell över resultat

<table>
<thead>
<tr>
<th>Försurningsgrad</th>
<th>Måluppfyllelse kalk</th>
<th>Rovfisk- eller karpfishdominerad</th>
<th>Ekologisk status - Fisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ja</td>
<td>Rovfisk</td>
<td>Måttlig</td>
</tr>
</tbody>
</table>

Beskrivning av sjö och provfiske

Om gösen etablerat sig tack vare utsättningarna i Rusken eller om den spridit sig till sjön från utsättningar i andra delar av vattensystemet kan man med säkerhet inte veta. Hur som helst har ambitionen med att etablera gösen i Rusken lyckats, då gös inte är en naturligt förekommande art i sjön. Om dagens bestånd av sik är ett resultat av de stora utsättningarna i de områden där gösna fisk finns, är det möjligt att gösen etablerat sig. Utsättningarna av gös och sikloja har bedömts vara naturligt förekommande i Rusken och kan således ansättas som en förekommande art (Carlsson, 2008). Utsättningar av gösna fisket är vanligt förekommande i mitten av 1900-talet. Troligen har utsättningen inte haft stor betydelse för dagens bestånd av gösna fisk i Rusken. Utsättningarna av gös, sikloja och öring kan inte sägas varit lyckosamma. Förutsättningarna för dessa arter är långt ifrån optimal med tanke på sjöns näringsrika karakter.
Nätprovfiske i Rusken 2017

Faktorer som påverkar fångst och fiskbestånd

Nedan presenteras data och uppgifter om olika faktorer som kan påverka fiskbestånd, fiskens fördelning i sjön och fångstbarhet vid provfisketillfället.

Väder

Nedan presenteras data om väderförhållanden under 2017 samt under själva provfisketillfället. Hur väder var under framförallt försommar och sommar påverkar den nyfödda årsklassens storlek och ynglens tillväxt. Lufttryck och väderlek under provfisketillfället är två parametrar som påverkar fiskens aktivitet.

VÄDRET UNDER 2017

![Temperatur och Nederbörd](image)

Året inleddes nederbördssattigt. Från juni till december var nederbördens större än normalt, förutom under juli. Nederbördien har inte så stor direkt effekt på fisksamhället i sjöar. Intensiva regn kan dock leda till ökad ytavrinning och ökad tillförsel av organiskt material.
Sammanfattningsvis har väderet under 2017 medfört tämligen normala förutsättningar för
tillväxt och yngeltillväxt för varmvattensarter. Däremot har den höga temperaturen under
höst och vinter sannolikt varit negativ för höstlekande arter.

VÄDERET UNDER PROVFISKE-TILLFÄLLET
Väderet under provfisket dominerades av växlande molnighet. Sista morgonen var det dock
dimma. Det regnade inget. Vindarna kom från syd till sydväst och var måttliga under första
kvällen och morgonen. Till den andra kvällen avtog vindarna till svaga för att morgonen
därpå vara stilla. Fångsten bedöms inte ha påverkats negativt av rådande väderlek.

Vattenkemi och temperatur
Vattnets pH har varit stabilt omkring pH 7 (neutalt) de senaste decennierna. Inga surstötar
har registrerats vid genomförda vattenprovtagningar. Motståndskraften mot försurning (alka-
linitet) har varit god till mycket god sedan åtminstone 1990-talets början (Naturvårdsver-
ket 2000).

![Figur 7. pH (blått) och alkalinitet (rött) från provpunkter i Ruskens mitt.](image1)

Halterna av totalfosfor har i Rusken haft en minskande trend sedan 1990-talet. Vid de
flesta provtagningstillfällen de senaste åren har vattnet uppvisat måttligt höga halter (Natur-
vårdsverket 2000). Halterna av totalkväve uppvisar en minskande trend sedan millennie-
skiftet och har de senaste tiotälet uppvisat måttligt höga nivåer (Naturvårdsverket 2000).

![Figur 8. Totalfosfor (blått) och totalkväve (rött) från provpunkter i Ruskens mitt.](image2)

Figur 9. Färgtal (blått) och konduktivitet (rött) från provpunkter i Ruskens mitt.

Rusken

Provfiskeresultat och analys

Bottensatta nät

Vid provfisket 2017 fångades abborre, benlöja, braxen, gers, gädda, gös, lake, mört och sik. I bottensatta nät fångades totalt 2884 fiskar med en sammanlagd vikt av 114 kilo (Tabell 3). Abborre var den talrikaste fångsten medan gös stod för nästan halva fångstvikten (Figur 11). Den totala fångsten per ansträngning var större än den 90:e percentilen (Tabell 3 och Tabell 4) i jämförelse med regionala sjöar av liknande storlek och djup (ekoregion 6, Sydväst, söder om norrlandsgränsen, inom vattendelaren till Västerhavet, under 200 meter över havet). Detta betyder att den totala fångsten per ansträngning i bottensatta nät kan betraktas som mycket stor.

Utöver fångsten som redovisas nedan fångades även tre braxnar mellan 475 och 620 millimeter samt en abborre på 335 millimeter i extramaskan om 75 millimeter.

Tabell 3. Fångstuppgifter för bottensatta nät i Rusken.

<table>
<thead>
<tr>
<th>Fisk</th>
<th>Antal</th>
<th>Vikt (g)</th>
<th>Antal per nät</th>
<th>Vikt % av tot</th>
<th>Vikt % av tot</th>
<th>Medelvikt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abborre</td>
<td>1911</td>
<td>27063</td>
<td>47,8</td>
<td>676,6</td>
<td>23,7</td>
<td>14,2</td>
</tr>
<tr>
<td>Benlöja</td>
<td>1</td>
<td>21</td>
<td>0,0</td>
<td>0,5</td>
<td>0,0</td>
<td>21,0</td>
</tr>
<tr>
<td>Braxen</td>
<td>1</td>
<td>900</td>
<td>0,0</td>
<td>22,5</td>
<td>0,0</td>
<td>900,0</td>
</tr>
<tr>
<td>Gers</td>
<td>621</td>
<td>6333</td>
<td>15,5</td>
<td>158,3</td>
<td>12,5</td>
<td>1583,3</td>
</tr>
<tr>
<td>Gädda</td>
<td>1</td>
<td>551</td>
<td>0,0</td>
<td>13,8</td>
<td>0,0</td>
<td>13,8</td>
</tr>
<tr>
<td>Gös</td>
<td>102</td>
<td>52476</td>
<td>2,6</td>
<td>1311,9</td>
<td>0,6</td>
<td>1311,9</td>
</tr>
<tr>
<td>Lake</td>
<td>1</td>
<td>694</td>
<td>0,0</td>
<td>17,4</td>
<td>0,6</td>
<td>17,4</td>
</tr>
<tr>
<td>Mört</td>
<td>245</td>
<td>25812</td>
<td>6,1</td>
<td>645,3</td>
<td>0,4</td>
<td>645,3</td>
</tr>
<tr>
<td>Sik</td>
<td>1</td>
<td>512</td>
<td>0,0</td>
<td>12,8</td>
<td>0,0</td>
<td>12,8</td>
</tr>
<tr>
<td>Totalt</td>
<td>2884</td>
<td>114362</td>
<td>72,1</td>
<td>2859,1</td>
<td>100,0</td>
<td>369,1</td>
</tr>
</tbody>
</table>

Tabell 4. Jämförvärden (fångst per ansträngning) för bottensatta nät från provfiskade sjöar av liknande karaktär i ekoregion 6 (Sydväst, söder om norrlandsgränsen, inom vattendelaren till Västerhavet, under 200 meter över havet).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abborre</td>
<td>6,3</td>
<td>218,6</td>
<td>325,8</td>
<td>444,4</td>
<td>18,7</td>
<td>645,9</td>
<td>939,6</td>
<td>0,1</td>
<td>0,2</td>
<td>5,9</td>
<td>1,3</td>
<td>11,6</td>
<td>1,8</td>
<td>22,5</td>
<td></td>
</tr>
<tr>
<td>Benlöja</td>
<td>0</td>
<td>0,1</td>
<td>2</td>
<td>5,9</td>
<td>0,7</td>
<td>180,5</td>
<td>363,6</td>
<td>1,8</td>
<td>3,6</td>
<td>7,6</td>
<td>7,6</td>
<td>12,1</td>
<td>100,8</td>
<td>140,4</td>
<td></td>
</tr>
<tr>
<td>Braxen</td>
<td>0,1</td>
<td>12,9</td>
<td>34,9</td>
<td>93,8</td>
<td>0,7</td>
<td>68,3</td>
<td>363,6</td>
<td>1,8</td>
<td>3,6</td>
<td>7,6</td>
<td>7,6</td>
<td>12,1</td>
<td>100,8</td>
<td>140,4</td>
<td></td>
</tr>
<tr>
<td>Gers</td>
<td>1,8</td>
<td>10,2</td>
<td>22,1</td>
<td>36,1</td>
<td>0,1</td>
<td>7,6</td>
<td>100,8</td>
<td>0,7</td>
<td>3,6</td>
<td>7,6</td>
<td>7,6</td>
<td>12,1</td>
<td>100,8</td>
<td>140,4</td>
<td></td>
</tr>
<tr>
<td>Gädda</td>
<td>0</td>
<td>8,3</td>
<td>21,3</td>
<td>30</td>
<td>0,1</td>
<td>7,6</td>
<td>100,8</td>
<td>1,8</td>
<td>3,6</td>
<td>7,6</td>
<td>7,6</td>
<td>12,1</td>
<td>100,8</td>
<td>140,4</td>
<td></td>
</tr>
<tr>
<td>Gös*</td>
<td>0,1</td>
<td>7,8</td>
<td>84,7</td>
<td>247,9</td>
<td>0,1</td>
<td>7,6</td>
<td>100,8</td>
<td>0,7</td>
<td>3,6</td>
<td>7,6</td>
<td>7,6</td>
<td>12,1</td>
<td>100,8</td>
<td>140,4</td>
<td></td>
</tr>
<tr>
<td>Lake*</td>
<td>0</td>
<td>5,5</td>
<td>107</td>
<td>234,9</td>
<td>0,7</td>
<td>7,6</td>
<td>100,8</td>
<td>0,7</td>
<td>3,6</td>
<td>7,6</td>
<td>7,6</td>
<td>12,1</td>
<td>100,8</td>
<td>140,4</td>
<td></td>
</tr>
<tr>
<td>Mört</td>
<td>1,4</td>
<td>63,6</td>
<td>163,5</td>
<td>245,2</td>
<td>10,2</td>
<td>383,4</td>
<td>713,1</td>
<td>0,4</td>
<td>0,7</td>
<td>3,6</td>
<td>7,6</td>
<td>12,1</td>
<td>100,8</td>
<td>140,4</td>
<td></td>
</tr>
<tr>
<td>Sik*</td>
<td>0</td>
<td>1,9</td>
<td>10,7</td>
<td>32,8</td>
<td>0,7</td>
<td>65,9</td>
<td>2208</td>
<td>0,4</td>
<td>0,7</td>
<td>3,6</td>
<td>7,6</td>
<td>12,1</td>
<td>100,8</td>
<td>140,4</td>
<td></td>
</tr>
</tbody>
</table>

*Samtliga sjöar i ekoregion 6.
Pelagiska nät

I pelagiska nät fångades totalt 131 fiskar med en sammanlagd vikt av tolv kilo (Tabell 5). Abborre var den talrikaste fångsten medan fångstvikten dominerades stort av gös (Figur 12). Den stora dominansen av gös bör tas med en nypa salt då antalet gösar var lågt varför slumpen får större betydelse. Gös hade varit den dominerande fångsten även utan den största gösen på 85 centimeter och 5 kilo, vilket för övrigt var den största gösen i provfisket. Antalsmässigt var den totala fångsten per ansträngning i närheten av den 90:e percentilen (Tabell 6) i regionala jämförelser. Fångstvikten per ansträngning var strax under de 90:e percentilen. Detta betyder att antalet fångade fiskar per ansträngning kan betraktas som normalt medan fångstvikten per ansträngning var stor, på gränsen till mycket stor.
Tabell 5. Fångstuppgifter för pelagiska nät i Rusken.

<table>
<thead>
<tr>
<th></th>
<th>Abborre</th>
<th>Benlöja</th>
<th>Gös</th>
<th>Mört</th>
<th>Sik</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal</td>
<td>79</td>
<td>28</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>131</td>
</tr>
<tr>
<td>Vikt (g)</td>
<td>306</td>
<td>905</td>
<td>8561</td>
<td>809</td>
<td>1285</td>
<td>11866</td>
</tr>
<tr>
<td>Antal per nät</td>
<td>13,2</td>
<td>4,7</td>
<td>1,0</td>
<td>1,7</td>
<td>1,3</td>
<td>21,8</td>
</tr>
<tr>
<td>Vikt per nät (g)</td>
<td>51,0</td>
<td>150,8</td>
<td>1426,8</td>
<td>134,8</td>
<td>214,2</td>
<td>1977,7</td>
</tr>
<tr>
<td>Antal % av tot</td>
<td>60,3</td>
<td>21,4</td>
<td>4,6</td>
<td>7,6</td>
<td>6,1</td>
<td>100,0</td>
</tr>
<tr>
<td>Vikt % av tot</td>
<td>2,6</td>
<td>7,6</td>
<td>72,1</td>
<td>6,8</td>
<td>10,8</td>
<td>100,0</td>
</tr>
<tr>
<td>Medelvikt (g)</td>
<td>3,9</td>
<td>32,3</td>
<td>1426,8</td>
<td>80,9</td>
<td>160,6</td>
<td>340,9</td>
</tr>
</tbody>
</table>

Tabell 6. Jämförvärden (fångst per ansträngning) för pelagiska nät från provfiskade sjöar i ekoregion 6 (Sydväst, söder om norrlandsgränsen, inom vattendelaren till Västerhavet, under 200 meter över havet).

<table>
<thead>
<tr>
<th></th>
<th>Abborre</th>
<th>Benlöja</th>
<th>Gös</th>
<th>Mört</th>
<th>Sik</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal</td>
<td>0,3</td>
<td>0,5</td>
<td>0,1</td>
<td>0,4</td>
<td>0,1</td>
<td>2,2</td>
</tr>
<tr>
<td>Vikt (g)</td>
<td>5,7</td>
<td>11,3</td>
<td>13,5</td>
<td>19,5</td>
<td>12,6</td>
<td>116,9</td>
</tr>
<tr>
<td>Antal</td>
<td>1,5</td>
<td>2,5</td>
<td>0,5</td>
<td>2,6</td>
<td>0,3</td>
<td>11,3</td>
</tr>
<tr>
<td>Vikt (g)</td>
<td>32,7</td>
<td>42,9</td>
<td>84,3</td>
<td>40,3</td>
<td>27,3</td>
<td>260,4</td>
</tr>
<tr>
<td>Antal</td>
<td>4,8</td>
<td>5,1</td>
<td>0,5</td>
<td>5,6</td>
<td>0,9</td>
<td>23,6</td>
</tr>
<tr>
<td>Vikt (g)</td>
<td>115,8</td>
<td>60,5</td>
<td>316</td>
<td>118,1</td>
<td>52</td>
<td>704,1</td>
</tr>
<tr>
<td>Antal</td>
<td>10,3</td>
<td>13</td>
<td>2,3</td>
<td>23,2</td>
<td>2,2</td>
<td>55,1</td>
</tr>
<tr>
<td>Vikt (g)</td>
<td>227,3</td>
<td>204,5</td>
<td>768</td>
<td>548,2</td>
<td>134,3</td>
<td>1527</td>
</tr>
<tr>
<td>Antal</td>
<td>27,9</td>
<td>29</td>
<td>3,7</td>
<td>45,8</td>
<td>5,8</td>
<td>97,9</td>
</tr>
<tr>
<td>Vikt (g)</td>
<td>619,9</td>
<td>462,5</td>
<td>1398</td>
<td>1305</td>
<td>273,8</td>
<td>1993</td>
</tr>
</tbody>
</table>

Djupfordelning

Fisk fångades på samtliga djup, vilket var möjligt på grund av goda syreförhållanden i hela vattenmassan. Antalet fångade fiskar per nät var störst ner till sex meters djup. Att fångsten var störst i de grundaste djupzonerna är normalt. Dessutom var en stor andel av abborrarna årsyngel vilka också i stor utsträckning håller till på grunda bottnar där tillgången på lämplig föda och skydd är god. Fångstviktken per nät var störst i den grundaste djupzonen för att sedan minska med ökande djup. Skillnaden mellan djupzonerna var inte lika stora som för antalet fångade fiskar per nät. Detta förklaras av att fångstviktken av gös ökade ner till tolv meter och att medelvikten av fångade gös var störst djupare än tolv meter samt att medelvikten av fångade abborrar var högst mellan sex och tolv meters djup.

Tabell 7. Fångst per ansträngning i bottensatta nät fördelat per djupzon.

<table>
<thead>
<tr>
<th>Djupzon</th>
<th>Abborre</th>
<th>Benlöja</th>
<th>Braxen</th>
<th>Gers</th>
<th>Gädda</th>
<th>Gös</th>
<th>Lake</th>
<th>Mört</th>
<th>Sik</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3 meter</td>
<td>86,4</td>
<td>0,1</td>
<td>0,0</td>
<td>21,0</td>
<td>0,1</td>
<td>0,9</td>
<td>0,0</td>
<td>13,7</td>
<td>0,0</td>
<td>122,2</td>
</tr>
<tr>
<td>3-6 meter</td>
<td>93,2</td>
<td>0,0</td>
<td>0,1</td>
<td>16,5</td>
<td>0,0</td>
<td>2,1</td>
<td>0,0</td>
<td>8,5</td>
<td>0,1</td>
<td>120,5</td>
</tr>
<tr>
<td>6-12 meter</td>
<td>8,2</td>
<td>0,0</td>
<td>0,0</td>
<td>17,5</td>
<td>0,0</td>
<td>4,6</td>
<td>0,0</td>
<td>1,7</td>
<td>0,0</td>
<td>32,0</td>
</tr>
<tr>
<td>12-20 meter</td>
<td>1,3</td>
<td>0,0</td>
<td>0,0</td>
<td>2,6</td>
<td>0,0</td>
<td>1,7</td>
<td>0,1</td>
<td>0,1</td>
<td>0,0</td>
<td>5,9</td>
</tr>
<tr>
<td>0-3 meter</td>
<td>1378,5</td>
<td>2,1</td>
<td>0,0</td>
<td>173,2</td>
<td>55,1</td>
<td>495,3</td>
<td>0,0</td>
<td>1223,4</td>
<td>0,0</td>
<td>3327,6</td>
</tr>
<tr>
<td>3-6 meter</td>
<td>693,9</td>
<td>0,0</td>
<td>0,0</td>
<td>136,2</td>
<td>0,0</td>
<td>1155,0</td>
<td>0,0</td>
<td>1137,8</td>
<td>51,2</td>
<td>3264,1</td>
</tr>
<tr>
<td>6-12 meter</td>
<td>486,6</td>
<td>0,0</td>
<td>0,0</td>
<td>226,8</td>
<td>0,0</td>
<td>1987,2</td>
<td>0,0</td>
<td>152,2</td>
<td>0,0</td>
<td>2852,8</td>
</tr>
<tr>
<td>12-20 meter</td>
<td>1,9</td>
<td>0,0</td>
<td>0,0</td>
<td>41,4</td>
<td>0,0</td>
<td>1448,4</td>
<td>99,1</td>
<td>31,7</td>
<td>0,0</td>
<td>1622,6</td>
</tr>
</tbody>
</table>
Tabell 8. Fångst per ansträngning i pelagiska nät fördelat per djupzon.

<table>
<thead>
<tr>
<th>Djupzon</th>
<th>Abborre</th>
<th>Benlöja</th>
<th>Gös</th>
<th>Mört</th>
<th>Sik</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6 meter</td>
<td>Antal</td>
<td>32,0</td>
<td>12,5</td>
<td>0,5</td>
<td>4,0</td>
<td>0,5</td>
</tr>
<tr>
<td>6-12 meter</td>
<td>Antal</td>
<td>7,0</td>
<td>1,5</td>
<td>1,0</td>
<td>1,0</td>
<td>0,0</td>
</tr>
<tr>
<td>12-18 meter</td>
<td>Antal</td>
<td>0,5</td>
<td>0,0</td>
<td>1,5</td>
<td>0,0</td>
<td>3,5</td>
</tr>
<tr>
<td>0-6 meter</td>
<td>Vikt (g)</td>
<td>56,0</td>
<td>398,5</td>
<td>336,5</td>
<td>337,5</td>
<td>9,5</td>
</tr>
<tr>
<td>6-12 meter</td>
<td>Vikt (g)</td>
<td>96,5</td>
<td>54,0</td>
<td>809,0</td>
<td>67,0</td>
<td>0,0</td>
</tr>
<tr>
<td>12-18 meter</td>
<td>Vikt (g)</td>
<td>0,5</td>
<td>0,0</td>
<td>3135,0</td>
<td>0,0</td>
<td>633,0</td>
</tr>
</tbody>
</table>

Abborre föredrar om sommaren det uppvärmda vattnet, vilket vid provfisketillfället innebär hela vattenmassan. Vanligen brukar mindre individer vara mer talrika på grundare bottnar. Större abborrar brukar vanligen uppehålla sig något djupare men kan också uppträda grunt. Att fångsten var lägst djupare än tolv meter var sannolikt ett resultat av att tillgången på föda (bland annat mindre fiskar) var låg samtidigt som risken att bli upptagen av större fisk (främst gos och lake) var stor. Sammantaget var abborrens djupfordelning normal.

Mört förekommer om sommaren vanligen i det uppvärmda vattnet, vilket vid provfisketillfället innebär hela vattenmassan. Att fångsten trots det var störst mellan noll och tre meters djup för att sedan minska med ökande djup beror sannolikt på att tillgången på rovfisk var förhållandevis låg mellan noll och tre meters djup. Att uppehålla sig djup kan också innebära en fara från predatorer ovanifrån. Siktområdet var 3,0 meter vilket troligen gav ett visst skydd även grundare än tre meter.

Gös föredrar varmt vatten i de centrala delarna av sjön. Fångstens djupfordelning speglar detta väl och betraktas som normal. Resultatet tyder på att gös var den dominerande arten i toppen av näringskedjan vilket betyder att de i mindre utsträckning behöver anpassa sig till andra arter för att inte riskera att bli upptagen.

Benlöja uppträder i sommaren ofta strax under ytan. Inte sällan uppehåller de sig över stora djup. Utifrån detta var det inte oväntat att flest benlör jag fångades i den grundaste djupzonen i pelagiska nät. Sammantaget var benlöjans djupfordelning normal.

Braxen föredrar varmt vatten och uppträder ofta över grunda vegetationssrika bottnar. Därför var det något oväntat att tre braxnar fångades i extramaskan om 75 millimeter mellan 8,5-13,7 meters djup. En del av förklaringen var troligen om att det rörde sig om stora individer och att vattentemperaturen var jämn i hela vattenmassan.

Abborre föredrar om sommaren det uppvärmda vattnet, vilket vid provfisketillfället innebär hela vattenmassan. Vanligen brukar mindre individer vara mer talrika på grundare bottnar. Större abborrar brukar vanligen uppehålla sig något djupare men kan också uppträda grunt. Att fångsten var lägst djupare än tolv meter var sannolikt ett resultat av att tillgången på föda (bland annat mindre fiskar) var låg samtidigt som risken att bli upptagen av större fisk (främst gos och lake) var stor. Sammantaget var abborrens djupfordelning normal.

Mört förekommer om sommaren vanligen i det uppvärmda vattnet, vilket vid provfisketillfället innebär hela vattenmassan. Att fångsten trots det var störst mellan noll och tre meters djup för att sedan minska med ökande djup beror sannolikt på att tillgången på rovfisk var förhållandevis låg mellan noll och tre meters djup. Att uppehålla sig djup kan också innebära en fara från predatorer ovanifrån. Siktområdet var 3,0 meter vilket troligen gav ett visst skydd även grundare än tre meter.

Gös föredrar varmt vatten i de centrala delarna av sjön. Fångstens djupfordelning speglar detta väl och betraktas som normal. Resultatet tyder på att gös var den dominerande arten i toppen av näringskedjan vilket betyder att de i mindre utsträckning behöver anpassa sig till andra arter för att inte riskera att bli upptagen.

Benlöja uppträder i sommaren ofta strax under ytan. Inte sällan uppehåller de sig över stora djup. Utifrån detta var det inte oväntat att flest benlör jag fångades i den grundaste djupzonen i pelagiska nät. Sammantaget var benlöjans djupfordelning normal.

Braxen föredrar varmt vatten och uppträder ofta över grunda vegetationssrika bottnar. Därför var det något oväntat att tre braxnar fångades i extramaskan om 75 millimeter mellan 8,5-13,7 meters djup. En del av förklaringen var troligen om att det rörde sig om stora individer och att vattentemperaturen var jämn i hela vattenmassan.
Gädda uppträder ofta i strandzonen där den finner lämpligt skydd att gömma sig i väntan på att ett lämpligt byte ska komma inom attackavstånd. Större gäddor kan också uppträda i den fria vattenmassan. I detta provfiske fångades endast en gädda varför inga djupare analyser av djupfördelning låter sig göras.

Sik föredrar kallt vatten under sprängskiktet och brukar vanligtvis uppträda i de djupare delarna av sjön. De flesta sikar fångades djupare än tolv meter, medan ett par fångades ner till sex meters djup. Sammantaget var siklöjans djupfördelning normal.

Lake är en kallvattensfisk som ofta uppträder i sjöns djupare delar. I detta provfiske fångades endast en lake varför inga djupare analyser av djupfördelning låter sig göras. Att eventuella lakar skulle fångas i de djupare näten var väntat.

Tabell 9. Längduppgifter för fångst i både bottensatta och pelagiska nät.

<table>
<thead>
<tr>
<th></th>
<th>Abborre</th>
<th>Benlöja</th>
<th>Braxen</th>
<th>Gers</th>
<th>Gädda</th>
<th>Göss</th>
<th>Lake</th>
<th>Mört</th>
<th>Sik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medellängd (mm)</td>
<td>67,4</td>
<td>164,1</td>
<td>415,0</td>
<td>92,7</td>
<td>455,0</td>
<td>324,2</td>
<td>490,0</td>
<td>194,0</td>
<td>229,4</td>
</tr>
<tr>
<td>Störst individ (mm)</td>
<td>360</td>
<td>190</td>
<td>415</td>
<td>175</td>
<td>455</td>
<td>850</td>
<td>490</td>
<td>350</td>
<td>415</td>
</tr>
<tr>
<td>Minst individ (mm)</td>
<td>40</td>
<td>135</td>
<td>415</td>
<td>45</td>
<td>455</td>
<td>50</td>
<td>490</td>
<td>80</td>
<td>130</td>
</tr>
</tbody>
</table>

Fångade arter

ABBORRE

De fångade abborrarna var 40 till 360 millimeter långa. Medellängden var 67 millimeter (Tabell 9). Antalet abborrar per bottensatt nät var över den 90:e percentilen i jämförelse med regionala sjöar av liknande storlek och djup. Fångstvikten per bottensatt nät var över den 75:e percentilen. Antalet abborrar betraktas därför som mycket stort och fångstvikten som stor. I pelagiska nät var antalet abborrar per nät stort och fångstvikten normal.

Medelvikten av fångade abborrar var under (Tabell 3 och Tabell 5) medelvikten av fångade abborrar i standardiserade nätprovfisken i Sverige (47 gram). Den låga medelvikten beror till stor del på att fångsten av årsyngel var väldigt stor. Årsynglen var omkring 55 millimeter (Figur 14). Årsynglens årsklasstyrka påverkas av försommarens och sommarens temperatur, vilket under 2017 var gynnsamt (Figur 6). Dessutom genomfördes nätprovfisket förhållandevis sent på säsongen, vilket medförde att årsynglen haft lång tid på sig att växa. Därmed hade de högre fångstbarhet i nätet jämfört med om nätprovfisket genomförts tidigare på säsongen. Provfiskets tidpunkt och den varma vären och sommaren förklarar dock inte helt den stora fångsten av årsyngel. En annan potentiell förklaring till den stora fångsten av årsyngel kan vara att äldre abborrar utsätts för högt predationstryck från främst gös. Detta skulle kunna medföra att gösen håller nere antalet abborrar äldre än en sommar, vilket i sin tur håller nere abborrens predationstryck på de egna årsynglen. Mycket starka årskullar av abborre har även dokumenterats i andra nätprovfiskeade sjöar med starka gösbestånd.

Förutom att fångsten var dominerad av årsyngel kan längdfördelningen betraktas som normal (Figur 14). Några glapp i längdfördelningen kan inte ses då abborrarna omkring 100-110 millimeter troligen var fjolårsungar. En förhållandevis liten del av årsynglen tycks överleva till det andra levnadsåret. Till det andra levnadsåret ska abborren gå över från att äta djurplankton till bottenfauna. Konkurrensen med andra abborrar och övriga arter (exempelvis gers) kan troligen vara hög och begränsa mången abborrar som förmår växla över till en bottenfaunadiet. Hur bottenfaunan ser ut i Rusken har inte studerats inom detta projekt. Men det är troligt att abborren skulle påverkas positivt av en mer talrik bottenfauna. Om abborrarna väl överlever till det andra året tycks konkurrensen vara lägre och inte begränsa möjligheten att växla över till fiskdiet.

Kvoten mellan abborre och karpfisk var nära referensvärdet i beräkningar av ekologisk status (Tabell 10). Detta innebär att balansen mellan abborre och karpfisk var tämligen god. Andelen fiskätande abborrfiskar utgörs förutom av abborre över 120-180 millimeter (mer exakt definition finns Bilaga 1) av samtliga fångade gösar. Detta betyder att andelen fiskätande abborrfiskar i detta provfiske inte säger mycket om fångsten av abborre då fiskätande abborrfiskar dominerades av gös.

Sammantaget tyder resultatet på en hög täthet som förklaras av den stora fångsten av årsyngel. Rekryteringen fungerar normalt, men överlevnaden till det andra levnadsåret tycks vara förhållandevis låg.
JÄMFÖRELSER MED TIDIGARE PROVFISKEN

Kvoten mellan abborre och karpfisk har legat nära referensvärdet. Detta tyder på att fisk-samhället inte har varit särskilt näringspåverkat de senaste tjugo åren. Andelen potentiellt fiskätande abborrfiskar har ökat jämfört med tidigare nätprovfisken. Detta säger dock inte så mycket om abborrens utveckling då fångsten av gös ökat tämligen mycket.

Figur 14. Längdfördelningsdiagram abborre.

BENLÖJA

Medelvikten av fångade benlöjor var hög (Tabell 5) jämfört med medelvikten av fångade benlöjor i standardiserade nätprovfisken i Sverige (16 gram). Antalet benlöjor var dock förhållandevis litet. Fångsten dominerades av individer omkring 165-170 millimeter (Figur 15).

Sammantaget säger resultatet inte särskilt mycket om benlöjan. Beståndet är troligen livskraftigt och det finns ingen anledning att tro att rekryteringen ska vara negativt påverkad.

JÄMFÖRELSE MED TIDIGARE PROVFISKEN

BRAXEN
Det fångades endast en braxen på 415 millimeter i ordinarier maskstorlekar. Därutöver fångades tre stycken i extramaskan om 75 millimeter. Fångsten får därför betraktas som mycket liten.

Fångsten tyder på ett mycket glest bestånd, i synnerhet eftersom det var första gången som braxen fångades i ett nätprovfiske i Rusken. På 1800-talet har det beskrivits att fisket efter braxen var betydligt vid lektiden och att den maximala vikten uppgick till 4,5 kilo. Braxen kan dock tänkas vara en vinnare i ett allt varmare klimat och kan därför möjlichen öka framöver.

JÄMFÖRELSE MED TIDIGARE PROVFISKEN

GERS
De fångade gersarna var 45 till 175 millimeter långa. Medellängden var 93 millimeter (Tabell 9). Fångsten per ansträngning av gers var över den 90:e percentilen i jämförelse med regionala sjöar av liknande storlek och djup. Därför betraktas fångsten som mycket stor. I pelagiska nät fångades ingen gers, vilket är normalt.
Medelvikten av fångade gersar (Tabell 3) var strax över medelvikten av fångade gersar i standardiserade nätprovfisken i Sverige (8 gram).

Sammantaget tyder resultatet på ett stort bestånd av gers med god rekrytering.

JÄMFÖRELSER MED TIDIGARE PROVFISKEN

GERS

![Längdfördelningsdiagram gers](image)

Figur 16. Längdfördelningsdiagram gers.

GÄDDA

Det fångades endast en gädda på 455 millimeter. Fångsten av gädda är oftast underskattad i nätprovfisken eftersom gäddor fångas dåligt med nät. Detta beror på att gäddan står still långa stunder samt att den avläggar kroppskorset medför låg fångstbarhet. Därför är sannolikt beståndet större än vad provfisket visar. Samtidigt har gäddan troligen varit vanligare förr. Delvis på grund av att gösen idag är den dominerande rovfisken men också på grund av att lämpliga lekmiljöer har minskat som en följd av vattenreglering, kanaliserings av diken och vattendrag, utbyggnad av hamnar etcetera.

JÄMFÖRELSER MED TIDIGARE PROVFISKEN

GÖS

Medelvikten av fångade gösar i bottensatta nät (Tabell 3) var i paritet med medelvikten av fångade gösar i standardiserade nätprovfisken i Sverige (594 gram). I pelagiska nät (Tabell 5) var medelvikten högre än riksgenomsnittet (540 gram). Till stor del kan detta förklaras av den stora gösen på 5 kilo.

Gös av samtliga årsklasser upp till elva somrar fanns närvarande i nätprovfisket. Äldre gösar fångades också, där den äldsta var 23 somrar (Figur 18). Ingen årskull var särskilt påtaglig vilket antyder en jämn rekrytering mellan åren. Årsyngel fångades och var från 50 till 90 millimeter långa (Figur 17). Normalt brukar antalet individer vara flest av den yngsta årsklassen för att sedan avta med ökad ålder. Här var fångsten svagt dominerad av yngre individer. I jämförelse med andra sjöar var tillväxten snabb upp till omkring 30 centimeter för att därefter avta (Figur 18 och Figur 19). Den avtagande tillväxten omkring 50 centimeter var sannolikt bidragande till att tämligen många individer omkring 50 centimeter fångades och kan också varit ett resultat av hög konkurrens mellan gösarna. En potentiell förklaring till tillväxtnödstran kan också vara att tillväxten på lämpliga byten för gösar mindre än 50 centimeter har varit god (mindre individer av främst abborre, mört, benlöja och gers) medan tillväxten på lämpliga byten för större gösar varit sämre (mellanstora abborrar, mörtar, benlöjor med mera.). Fångsten av övriga arter i nätprovfisket stärker denna förklaring.

Sammantaget tyder resultatet på ett starkt bestånd av gös som också var den dominerande rovfisken. De flesta årsklasser av gös fångades, vilket tyder på en fungerande och jämn rekrytering. Tillväxten var snabb upp till omkring 50 centimeter för att därefter avta.

JÄMFÖRELSER MED TIDIGARE PROVFISKEN

Andelen potentiellt fiskätande abborrfiskar (främst gös) har ökat jämfört med tidigare provfisketillfällen. Gösens andel av abborrfiskar i sjön har också ökat jämfört med tidigare provfisken. 2004 var fångstvikten av abborre större än fångstvikten av gös. 2017 var fångstvikten av gös omkring dubbelt så stor jämfört med abborre. Resultatet tyder på att gösen har gått framåt och kan troligen fortfarande vara på frammarsch i sjön. Det starka beståndet av gös kan sannolikt vara negativt för bland annat abborre.

Figur 17. Längdfördelningsdiagram gös.

Figur 18. Tillväxtkurva på provtagna gösar från Rusken (n=52).
Figur 19. Tillväxtkurva på provtagna gösar från flera svenska sjöar.

LAKE
Det fångades endast en lake på 490 millimeter. Fångsten av lake är oftast underskattad i nätprovfisken eftersom laken om sommaren uppträder på stora djup, oftast nära bottnen. Därför är sannolikt beståndet större än vad provfisket visar. Trots att beståndet troligen är större än vad provfisket visar tillhör laken de arter som troligen är mest hotade i Rusken. Detta på grund av att den föredrar kallt syreäkta vatten under språngskiktet.

JÄMFÖRELSER MED TIDIGARE PROVFISKEN

MÖRT
Medelvikten av fångade mörtar var mer än dubbelt så hög (Tabell 3 och Tabell 5) jämfört med medelvikten av fångade mörtar i standardiserade nätprovfisken i Sverige (42 gram bottonsetta nät och 30 gram pelagiska nät). Den höga medelvikten beror på att fångsten domineras av individer omkring 160 till 225 millimeter. Normalt brukar fångsten av de yngre årsklasserna vara störst, även om årsyngel av mört sällan fångas. Att fångsten av individer upp till 160 millimeter var förhållandevis låg i relation till större mört (Figur 20) kan möjligen förklaras av Rusken är en stor sjö och att näten inte läggs på lokaler där mindre mört huvudsakligen uppehåller sig. Liknande mönster har kunnat ses i andra stora sjöar.

Mört var den klart dominerande karpfisken. Kvoten mellan fångstvikten av abborre och karpfisk var nära referensvärden i beräkningar av ekologisk status (parameter 8 Tabell 10). Detta innebär att balansen mellan abborre och karpfisk var tätt överlagda vad gäller biomassa. Antalsmässigt fångades få mörtar i relation till abborre, vilket återspeglas i det låga p-värdet på diversitet (parameter 2, Tabell 10).

JÄMFÖRELSER MED TIDIGARE PROVFISKEN
har också ökat mellan provfisketillfällena. Hög medelvikt är vanligt i näringsfattiga sjöar, vilket därmed också tyder på att sjön är på väg mot ett mer ursprungligt tillstånd.

Kvoten mellan abborre och karpfisk har legat tämligen stabilt nära referensvärdet. Detta tyder på att fisksamhället inte har varit särskilt näringspåverkat de senaste tjugo åren.

SIK

Sammantaget tyder resultatet på att sik förekommer i tämligen ordinär omfattning i jämförelse med andra provfiskade sjöar med samma metodik. Historiskt sett har sikbeståndet varit mycket större. Siken tycks kunna bli tämligen storvuxen, vilket har oväntat då det beskrivits att sikens medelvikt minskat under 1900-talet.
Nätprovfiske i Rusken 2017

JÄMFÖRELSE MED TIDIGARE PROVFISKEN

Figur 22. Längdfördelningsdiagram sik.
Fångstutveckling i nätprovfisken

höga fångsten per ansträngning av abborre och benlöja 1996. På samma sätt kan detta sannolikt åtminstone delvis förklara att fångsten per ansträngning av gös (exklusive norra delen av sjön 1996) och sik har ökat då den största fångsten 2017 gjordes i den djupaste zonen på tolv till arton meters djup. Slumpen har troligen också haft betydelse för fångsten av gös och sik då antalet individer trots allt är förhållandevis litet.

![Diagram](image.png)

Statusbedömningar och förslag på åtgärder

I beräkningarna av ekologisk status med avseende på fisk (EQR8, Tabell 10) var det fyra indikatorer som pekade på sämre status än god. Dessa var artdiversitet med avseende på antal fiskar (indikator 2), fångst per nät avseende både antal och vikt (indikator 4 och 5) samt andelen potentiellt fiskätande abborrfiskar (indikator 7). Indikator 4 och 5 indikerar

Gersen tycks vara talrik och kan troligen konkurrera med abborrar som lever av bottenfauna. Att reducera gersbeståndet skulle sannolikt vara positivt för abborrens förmåga att växla över till en diet av bottenfauna. Åven övergången till fiskdiet skulle sannolikt främjas av en lägre konkurrens från gers. Men att reducera beståndet av gers bedöms vara svårt och kräver sannolikt kunskap om gersens lekplatser. Om den kunskapen finns kan åtgärder vara aktuellt. Att försöka reducera gers utanför lektid kan leda till höga bifångster av andra arter, exempelvis gös, sik, abborre och mört och bedöms inte vara lämpligt.

I ett framtidsscenario är det troligt att våra vatten kommer bli varmare och brunare. Gösen är troligen den art i Rusken som kommer gynnas mest av detta. Även karpfisk och abborre kommer troligen gynnas av varmare vatten. Men de arter som redan har minskat och troligen har en tämligen undanträngd tillvaro i sjön (lake, sik och eventuellt siklöja) kommer sannolikt att få det ännu tuffare i framtiden.

<table>
<thead>
<tr>
<th>Datum</th>
<th>19960801</th>
<th>19960802</th>
<th>20040802</th>
<th>20170809</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ av provfiske</td>
<td>Inven</td>
<td>Inven</td>
<td>Stand</td>
<td>Stand</td>
</tr>
<tr>
<td>Sjö</td>
<td>Rusken</td>
<td>Rusken</td>
<td>Rusken</td>
<td>Rusken</td>
</tr>
<tr>
<td>Antal fiskarter</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Jämförvärde Antal fiskarter</td>
<td>9,76</td>
<td>9,76</td>
<td>9,76</td>
<td>9,76</td>
</tr>
<tr>
<td>P-värde Antal fiskarter</td>
<td>0,07</td>
<td>0,07</td>
<td>0,25</td>
<td>0,62</td>
</tr>
<tr>
<td>Artdiversitet (antal)</td>
<td>2,79</td>
<td>3,24</td>
<td>3,30</td>
<td>2,02</td>
</tr>
<tr>
<td>Jämförvärde Artdiversitet (antal)</td>
<td>2,85</td>
<td>2,85</td>
<td>2,85</td>
<td>2,85</td>
</tr>
<tr>
<td>P-värde Artdiversitet (antal)</td>
<td>0,92</td>
<td>0,50</td>
<td>0,43</td>
<td>0,15</td>
</tr>
<tr>
<td>Artdiversitet (vikt)</td>
<td>3,33</td>
<td>3,98</td>
<td>3,81</td>
<td>3,12</td>
</tr>
<tr>
<td>Jämförvärde Artdiversitet (vikt)</td>
<td>3,37</td>
<td>3,37</td>
<td>3,37</td>
<td>3,37</td>
</tr>
<tr>
<td>P-värde Artdiversitet (vikt)</td>
<td>0,96</td>
<td>0,42</td>
<td>0,56</td>
<td>0,74</td>
</tr>
<tr>
<td>Fångst/nät (vikt)</td>
<td>3031</td>
<td>1870</td>
<td>1050</td>
<td>2859</td>
</tr>
<tr>
<td>Jämförvärde Fångst/nät (vikt)</td>
<td>1461</td>
<td>1461</td>
<td>1461</td>
<td>1461</td>
</tr>
<tr>
<td>P-värde Fångst/nät (vikt)</td>
<td>0,12</td>
<td>0,60</td>
<td>0,48</td>
<td>0,15</td>
</tr>
<tr>
<td>Fångst/nät (antal)</td>
<td>80,4</td>
<td>62,5</td>
<td>20,9</td>
<td>72,1</td>
</tr>
<tr>
<td>Jämförvärde Fångst/nät (antal)</td>
<td>31,4</td>
<td>31,4</td>
<td>31,4</td>
<td>31,4</td>
</tr>
<tr>
<td>P-värde Fångst/nät (antal)</td>
<td>0,10</td>
<td>0,23</td>
<td>0,48</td>
<td>0,14</td>
</tr>
<tr>
<td>Medelvikt i totala fångsten</td>
<td>37,7</td>
<td>29,9</td>
<td>50,4</td>
<td>39,7</td>
</tr>
<tr>
<td>Jämförvärde Medelvikt i totala fångsten</td>
<td>44,3</td>
<td>44,3</td>
<td>44,3</td>
<td>44,3</td>
</tr>
<tr>
<td>P-värde Medelvikt i totala fångsten</td>
<td>0,76</td>
<td>0,47</td>
<td>0,81</td>
<td>0,84</td>
</tr>
<tr>
<td>Andel potentiellt fiskätande abborrfiskar (vikt)</td>
<td>0,48</td>
<td>0,44</td>
<td>0,51</td>
<td>0,62</td>
</tr>
<tr>
<td>Jämförvärde Andel potentiellt fiskätande abborrfiskar (vikt)</td>
<td>0,30</td>
<td>0,30</td>
<td>0,30</td>
<td>0,30</td>
</tr>
<tr>
<td>P-värde Andel potentiellt fiskätande abborrfiskar (vikt)</td>
<td>0,30</td>
<td>0,42</td>
<td>0,21</td>
<td>0,06</td>
</tr>
<tr>
<td>Kvot abborre/karpfiskar (vikt)</td>
<td>0,57</td>
<td>0,76</td>
<td>1,12</td>
<td>1,01</td>
</tr>
<tr>
<td>Jämförvärde Kvot abborre/karpfiskar (vikt)</td>
<td>1,28</td>
<td>1,28</td>
<td>1,28</td>
<td>1,28</td>
</tr>
<tr>
<td>P-värde Kvot abborre/karpfiskar (vikt)</td>
<td>0,46</td>
<td>0,63</td>
<td>0,90</td>
<td>0,83</td>
</tr>
<tr>
<td>Medelvärde av P-värdena</td>
<td>0,46</td>
<td>0,42</td>
<td>0,52</td>
<td>0,44</td>
</tr>
</tbody>
</table>

Ekologisk status efter expertgranskning

God Måttlig God Måttlig

Referenser

Bilaga 1. Jämförelsematerial och standardiserade bedömningsgrunder

Bakgrund

De standardiserade bedömningsgrunderna, EQR8, är ett fiskindex för sjöar baserat på åtta indikatorer, vilka man får ut från resultat i standardiserade provfisken med bottensatta nät. EQR8 påminner om FIX (gamla bedömningsgrunder för provfiske i sjöar). Båda metoderna jämför det observerade värdet med ett förväntat normaltillstånd som beräknas utifrån omgivningsfaktorer för varje enskild sjö. EQR8 inkluderar dock fler insamlade data än FIX vilket ger möjlighet till ett bättre referensvärde. Ett viktigt urvalskriterium är att de ingående indikatorerna är känsliga för påverkan, främst eutrofiering och försurning. Indikatorerna i EQR8 är dubbel-sidiga vilket betyder att de reagerar på både låga och höga värden.

Beräkningarna av indikatorerna i EQR8 ger ett sannolikhetsvärde, P-värde, mellan 0 och 1 där 1 betyder att det observerade värdet av indikatorn sammanfaller med referensvärdet. Den sammanvägda bedömningen av vattnets ekologiska status med avseende på fisk är medelvärdet av dessa P-värden. Ju närmare 1 medelvärdet av P-värdena ligger, desto högre ekologisk status. Man bör dock komma ihåg att EQR8 är just ett automatiskt framräknat index, vilket kan innebära att det finns risk för felklassning. I "Bedömningsgrunder för fiskfaunans status i sjöar konstateras att sannolikheten för felklassning mellan god och måttlig status är hela 37 % (det vill säga risken att en påverkad sjö klassas som opåverkad/referens eller tvärtom). Därför är det viktigt att kritiskt granska det resultat som EQR8 ger.

Förutsättningar för statusbedömning med EQR8:
1) Sjön ska ha naturlig förutsättning att hyssa fisk. Ett antagande som kan grundas på historiska data eller expertbedömning utifrån kännedom om förhållanden i liknande sjöar.
2) Provfisket måste utföras med Nordiska översiktssätt och enligt standarden för provfisken beskriven i Handboken för miljöövervakning.
3) Befintliga uppgifter om sjöns altitud, sjöarea, maxdjup, årsmedelvärde i lufttemperatur, och sjöns belägenhet i förhållande till högsta kustlinjen ska dokumenteras.

Bedömningar blir osäkrare för sjöar närmare gränserna av och utanför de intervall som ingick i referensmaterialet; altitud 10 - 894 meter över havet, sjöarea 2 - 4236 hektar, maxdjup 1 - 65 meter, årsmedelvärde i lufttemperatur -2 - 8 °C (Holmgren med flera 2007).

De ingående indikatorerna i EQR8
EQR8 beräknas primärt ur fångsten med bottensatta nät. Om ytterligare någon art fångas i pelagiska nät, räknas den dock med i antal inhemiska arter. Indikatorerna presenteras nedan.

1) Antal fiskarter
Ju fler arter som förekommer desto större är artdiversiteten. Till inhemiska arter räknas sådana arter som fanns i landet före 1900-talets början. Detta innebär att karp, rengång, bäckröding, kanadaröding, strupsnittsöring och indianlax inte räknas som inhemiska. Man tar
inte hänsyn till att inhemska arter har planterats ut till områden som ligger utanför artens naturliga utbredningsområde. I praktiken innebär detta att antal arter i sjön nästan alltid är detsamma som antal inhemska arter.

2) Artdiversitet (ANTAL)
Beräknas som $1/(P_i^2)$, där P_i = numerär andel av art i, och summeringen görs över samtliga arter i fångsten (Holmgren med flera 2007).

Diversitetsmätten (indikator 2 och 3) beskriver hur mången fisk av olika arter förhåller sig till varandra. Ett högt diversitetsvärde indikerar att arterna är jämnt fördelade medan ett lågt värde tvärtom indikerar att fisksamhället i hög grad domineras av en eller ett fåtal arter. I en sjö påverkad av någon miljöstörning kan man förvänta att diversiteten sjunker som en följd av att vissa fiskarter ökar i omfattning på andra arters bekostnad. Exempelvis klarar abborre och gädda sura förhållanden bättre än mört och braxen, medan mört, braxen och andra karpfiskar gynnas i näringsrika sjöar på bekostnad av rovfiskar (Dahlberg 2007).

3) Artdiversitet (VIKT)
Beräknas som $1/(P_i^2)$, där P_i = viktsandel av art i, och summeringen görs över samtliga arter i fångsten (Holmgren med flera 2007).

4) Fångst/nät (g)
Total vikt av alla inhemska arter (läs alla arter), dividerat med antal nät. Indikatorn speglar i hög grad näringshalten och ökar från näringsfattiga till näringsrika sjöar (Dahlberg 2007).

5) Fångst/nät (antal)
Totalt antal individer av alla inhemska arter, dividerat med antal nät. Indikatorn speglar i hög grad näringshalten och ökar från näringsfattiga till näringsrika sjöar (Dahlberg 2007).

6) Medelvikt i totala fångsten

7) Andel potentiellt fiskätande abborrfiskar (vikt)
Andelen potentiellt fiskätande abborre antas öka linjärt från 0 vid upp till 120 mm längd till 1 vid över 180 mm. Vid längder däremellan beräknas andelen som $1 - ((180 - L)/60)$. Individvikterna hos abborre uppskattas som vikt ($g = a * L^b$), där $a = 3,377 * 10^{-6}$ och $b = 3,205$. Varje uppskattad individvikt multipliceras sedan med den längdberoende andelen fiskätande enligt ovan. Summan av produkterna blir biomassen av fiskätande abborre, som sedan adderas till eventuell biomassa av gös. Slutligen divideras summan av fiskätande abborrfiskar med biomassen av samtliga arter i fångsten (Holmgren med flera 2007).
Måttet indikerar avvikelser i fisksamhället, vanligen beroende på att mört, braxen och andra karpfiskar gynnas av näringsrika förhållanden. Den konkurrenssvaga abborren hämmas då i sin tillväxt och får svårt att nå fiskätande storlek, vilket resulterar i en relativt låg andel fiskätande abborrfiskar. I riktigt sura sjöar kan andelen bli mycket hög men då beror det på att rekryteringen uteblivit under en följd av år och endast stora individer återstår. Även det omvända är vanligt i sura sjöar, dvs. en mycket låg andel fiskätande abborrfiskar, som då ofta beror på att abborren har en mycket dålig tillväxt (Dahlberg 2007). Anledningen till att gådda inte ingår i indikatorn är att gådda normalt underrepresenteras vid provfiske.

8) Kvot abborre/karpfiskar (vikt)
Total vikt av abborre dividerat med total vikt av alla förekommande karpfiskar (Holmgren med flera 2007). Generellt ökar andelen karpfisk (familjen *cyprinidae*) med ökad näringsrikedom. Till karpfiskar räknas asp, braxen, benlöja, björkna, elritsa, faren, id, mört, ruda, sarv, stäm, sutare och vimma. Andelen mörtfiskar av total fiskbiomassa ligger i en mesotrof sjö runt ca 50 % (Appelberg, M. muntligen 1996). En dominans av karpfiskar kan vara en indikation på att sjön är näringsrik och möjligen eutrofierad.

Klassning av ekologisk status

<table>
<thead>
<tr>
<th>Klass och Status</th>
<th>Gränsvärde EQR8 (medelvärde av p-värden för de 8 indikatorerna)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hög</td>
<td>≥0,72</td>
</tr>
<tr>
<td>2. God</td>
<td>≥0,46 och <0,72</td>
</tr>
<tr>
<td>3. Måttlig</td>
<td>≥0,30 och <0,46</td>
</tr>
<tr>
<td>4. Otillfredsställande</td>
<td>≥0,15 och <0,30</td>
</tr>
<tr>
<td>5. Dålig</td>
<td><0,15</td>
</tr>
</tbody>
</table>

Den ekologiska statusen är den sammanvägda bedömningen av alla ingående indikatorer i EQR8 och bygger på medelvärden av framräknade p-värden för de åtta indikatorerna (se ovan). Gränserna är satta utifrån sannolikheterna att felkalla en sjö. Exempelvis är sannolikheten att en opåverkad referenssjö klassas som påverkad mindre än 5 % vid EQR8 = 0,72. Vid EQR8 = 0,15 är det mindre än 10 % risk att en påverkad sjö klassas som en opåverkad referens. Vid gränsen mellan god och måttlig status (0,46) är sannolikheten 37 % att en sjö blir felklassad i båda grupperna av sjöar, dvs. att en påverkad sjö blir klassad som referens och vice versa. Detta skall dock tolkas som att ju närmare 0,46 EQR8-värdet är desto osäkrare blir klassningen (Dahlberg 2007).
Bilaga 2. Övriga parametrar

Bedömning av Försurningspåverkan

Sjöns försurningspåverkan bedöms enligt tabellen nedan. Kalkningen har uppsatta mål som skiljer sig från fall till fall och bedömningen sker efter de målen som finns uppsatta i senaste kalkplanen. Ett vanligt mål är att fiskfaunan inte ska vara påverkad av försurning.

<table>
<thead>
<tr>
<th>Klass</th>
<th>Kriterier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sjöar där fiskbestånden inte uppvisar några störningar som kan relateras till försurningspåverkad vattenkvalitet 3-5 år bakåt i tiden.</td>
</tr>
<tr>
<td>2</td>
<td>Sjöar där försurningskänsliga fiskarter (ex mört) uppvisar reproduktionsstörningar.</td>
</tr>
<tr>
<td>3</td>
<td>Sjöar där de försurningskänsliga fiskarterna helt upphört att reproducera sig.</td>
</tr>
<tr>
<td>4</td>
<td>Sjöar där försurningskänsliga fiskarter försvunnit till följd av försurningen men där det nuvarande fiskbeståndet (ex abborre) ej uppvisar några störningar som kan relateras till försurningspåverkad vattenkvalitet 3-5 år bakåt i tiden.</td>
</tr>
<tr>
<td>5</td>
<td>Sjöar där försurningskänsliga fiskarter försvunnit till följd av försurningen och där nuvarande fiskbestånd uppvisar reproduktionsstörningar.</td>
</tr>
<tr>
<td>6</td>
<td>Sjöar som varit så försurade att till och med abborrbeståndet slagits ut.</td>
</tr>
</tbody>
</table>

Uppfylls kalkningens mål?
Ja, i relation till de uppsatta målen.
Nej, i relation till de uppsatta målen.

Fördelning mellan rovfisk och karpfisk

Artfördelningen är viktig för att bedöma påverkansgraden på en sjös fiskekosystem. Artförde- nelningen återspeglas i många av de ingående indexen i EQR8 - antal arter, diversitetsindex, kvot mellan rovfisk och karpfisk och andel fiskätande abborrfiskar.

Om fisksamhället är rovfisk- eller karpfiskdominerat bedöms i rapporten enligt nedan. Indelningen är mycket grov och flera varianter finns där mer ovanliga arter som till exempel sjöfisk dominerar fiskarem för vintermässigt av abborre, gådda och gös, och andelen rovfisk hög och andelen mörtfisk låg. Fisksamhället regleras av rovfiskarna.

Om fisksamhället är rovfisk- eller karpfiskdominerat bedöms i rapporten enligt nedan. Indelningen är mycket grov och flera varianter finns där mer ovanliga arter som till exempel sjöfisk dominerar fiskarem för vintermässigt av abborre, gådda och gös, och andelen rovfisk hög och andelen mörtfisk låg. Fisksamhället regleras av rovfiskarna.

Artfördelning

<table>
<thead>
<tr>
<th>Artfördelning</th>
<th>Sjön domineras viktmässigt av abborre, gådda och gös, andelen rovfisk hög och andelen mörtfisk låg. Fisksamhället regleras av rovfiskarna.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rovfiskdominerad</td>
<td>Sjön domineras viktmässigt av abborre, gådda och gös, andelen rovfisk hög och andelen mörtfisk låg. Fisksamhället regleras av rovfiskarna.</td>
</tr>
<tr>
<td>Karpfiskdominerad</td>
<td>Sjön domineras viktmässigt av mört, braxen och sutare, andelen rovfisk låg och andelen mörtfisk hög. Fisksamhället regleras av växtätare och djurplanktonätare</td>
</tr>
</tbody>
</table>
Bilaga 3. Ekologiskt funktionell kantzon
Hur fungerar en ekologiskt funktionell kantzon?

Livsmiljö

- Vegetationen och medveten förなもの och samma vaska från skogsren. Interaktionen och utvecklingen av vattnet genom att fånga upp nödvändigt vatten från och tillsammans med vattnet genom att fånga upp vatten i renhet, frukt och ägg och små vuxna biotyper.
- Död och vapen skapar ett vattenfögl för både eller och andra vaksar.
- Träd och buskar bedövas för att fång av vattnet och biotyper fördjupar.

Klimatanläggning

- Träd och buskar bedövas för att fånga upp klimatet och förbättra vilken omfattande av fukt och dräkt.

Energikälla

- Träd och buskar bedövas för att fånga upp energin och biotyper fördjupar.

- Småkryck från kantonen som hamnar i vatten för att ge vattendraget egen energi och avhängighet för fisk och andra vattendragens rovdjur.
Bilaga 4. Körskador

Så påverkas vattnet

Ligerslättering

När marken överklättas med markpampers som önskar möjligheter att främja växten, gör den marken för ett stort avrinningsförmögen markavdrag. Själva marken förbättras genom förstärkning av markväxter i form av kvistar och annan önskad vegetation. Om marken står öppen överhuvudtaget kan markväxter och akutmassor i marken främja ett större avrinningsförmögen. Flera markväxter och akutmassor ökar markens avrinningsförmögenhet och är därför glädjande för markväxter och akutmassor.

Växtvegetation

Tungtegelare är ett stort problem i många svenska skogar och mark. Markväxter och akutmassor i marken ökar markens avrinningsförmögenhet och är därför glädjande för markväxter och akutmassor. Detta ger också större markväxter och akutmassor i marken, vilket bidrar till en högre återanvändbarhet av markväxter och akutmassor. Dessa markväxter och akutmassor är därför glädjande för markväxter och akutmassor.

Så påverkas marken

Gruvofchimbor kan ändras

När grundvattenmitt understäder marken förbättras grundvattenmittens avrinningsförmögenhet och markväxter och akutmassor i marken ökar markens avrinningsförmögenhet och är därför glädjande för markväxter och akutmassor. Dessa markväxter och akutmassor är därför glädjande för markväxter och akutmassor.

Kompakt kan även önska ändringar. Om grundvattenmitt understäder marken förbättras grundvattenmittens avrinningsförmögenhet och markväxter och akutmassor i marken ökar markens avrinningsförmögenhet och är därför glädjande för markväxter och akutmassor. Dessa markväxter och akutmassor är därför glädjande för markväxter och akutmassor.
Hur påverkar körskador miljön?

1. Utstörning av partiklar och näringsämnen
 Om dessen uppstår i körskador kan slampartiklar och näringsämnen läcka ut i vattendrag och sjöar. Framförallt näringsämnet fosfor kan frigöras och leda till överdosering av anoklande vattendrag. Vattendrag som grumlar runt växter, kan föröra klibbitomt och påverka det biologiska livet i vattnet.

2. Tungmetaller kan frigöras
 Tungmetaller som kvicksilver, kadmium, bly och koppar kan läcka ut i vattendrag och sjöar i samband med körskador. Läckagen kan pågå länge och ge förhöjda halter i svernande vattnet.

3. Avtrullna rötter

4. Forrs- och kulturövergripningar kan skadas
 Forrs- och kulturövergripningar är oönskade som historiskt källmaterial och skyddas enligt lag. Ändå skadas några lämnings i samhåll med skogsbevux. Med hållna tillgängliga kallorerlag, god plantering och kunskap minskar riskerna.

5. Försvårad skogsbruk och friluftsliv
 Dyper körskador gör det svårare att ta sig fram både för gäende och fordon. Det kan påverka friluftsliv och framtida skogsbevux.

Grundvattnenivån kan ändras
 Dyper körskador kan leda till markavvattning där grundvattenivån sänks långsiktig. Nätatsen kan också inträffa, att förortsinstallerna för vattentransport i marken ändras och marken ovanför körskadan får en höjd grundvattnenivå.

Markkompaktering
 När marken blir hoptryckt påverkas dess porstuktur och genomsnittligt. Förbindelsen mellan porerna bryts och gas och vatten kan inte röra sig lika lätt genom marken. Det gör att tillgängen på vatten och syre minskar för träds och andra växter.
Bilaga 5. Återutsättning av fisk

Det kan finnas flera anledningar till att en fiskare släpper tillbaka fångad fisk. Det kan exempelvis finnas regler som förbjuder en fiskare att ta upp och döda specifika arter eller storlekar av fisk. Återutsättning av fisk kan även ske på frivillig basis av den som fiskar.

Återutsättning av fisk, så kallad ”catch & release” innebär att den fångade fisken krokas av och släpps tillbaka i vattnet. Ett problem med ”catch & release” är att fisken vid bristfällig hantering kan ta skada av själva kroken, av syrebrist eller av att slemskiktet/fjällen skadas. Som fiskare kan du genom att hantera fisken på rätt sätt minska dödligheten hos fisken vid ”catch & release”.

Hjälpmedel att ha med i båten

Tips

Bilaga 6. Kort om fiskevård

Här nedan finns kortfattad information om fiskevård. För mer information rekommenderas exempelvis böckerna ”Ekologisk fiskevård” och ”Ekologi för fiskevård” som återfinns i referenslistan. Dessutom finns bra information om framförallt vattendrag i ”Ekologisk restaurering av vattendrag”. Avrinningsområdet och dess vattendrag har stor betydelse för sjöars ekologi.

Den allmänna filosofin beträffande fiskevården

Fiskevård var under lång tid synonymt med utsättning av fisk. Devisen var ”som man sår får man skörda”. Detta synsätt var förhärskande långt in på 1900-talet. Nu för tiden arbetar man sällan med utsättningar i fiskevårdande syfte. Undantaget är i de fall som mänsklig påverkan har inneburit en så kraftig reducering av de vilda bestånden att det bedöms som nödvändigt med förstärkningsutsättningar för beståndets fortlevnad. Istället handlar modern fiskevård om att återställa de naturliga biotoperna och att se till att det finns fria vandringsvägar för fisken. Tanken är alltså att fiskevården ska resultera i förbättrade förutsättningar för naturlig reproduktion och överlevnad.

Nyintroduktioner och stödutsättningar av fisk

Fiskutsättning och omflyttning av arter har pågått under lång tid och har i första hand syftat till att öka avkastningen i fiskglesa vatten alternativt återintroducera arter i vattenmiljöer där dessa försvunnit. Den första formen av fiskevård var med största sannolikhet omflyttning av fisk. I takt med att man lyckades konstbefruka rom ökade utsättningar och metoden var som mest populär mellan 1920 och 1940-talet. Många olika arter har varit föremål för utplantering bland annat lax, slikloja röding, abborre, öring, gös och bäckröding (Degerman med flera, 1998).

Det ska dock tilläggs att fiskutsättningar i vissa fall har varit av avgörande betydelse ur såväl försörjnings- som överlevnadsaspekt under början av 1900-talet.

Utsättning av fisk

För att sätta ut eller flytta fisk krävs tillstånd från länsstyrelsen enligt 16§ förordningen (1994:1716) om fisket, vattnenbruket och fiskerinäringen. Vidare precisering av villkor för tillståndsgivning finns i Fiskeriverkets föreskrifter (FiFS 2001:3) om odling, utplantering och flytning av fisk.

Vid bedömnings av tillstånd beaktas bland annat artens lämplighet med hänsyn till vattenområdets särart och om det finns risk för spridning av smittsamma sjukdomar eller parasiter.
Fiskeregler för fiskevård och attraktivt fiske

Principen vid val av fiskeregler bör vara största möjliga nytta för fisken i kombination med minsta möjliga inskränkning i fisket. För att säkerställa god reglelevernad är det också viktigt att motivera varför regler för fisket införs. Här nedan följer exempel som kan användas för att fiskevård och attraktivt fiske. Alla regler passar inte överallt varför ett lokalt urval och anpassning måste göras.

Minimimått

Minimimått innebär att fisk under en viss längd skall återutsättas. Man inför oftast minimimått i ett vatten för att skydda unga individer och ge dem möjlighet att leka minst en gång. Därför är det viktigt att minimimåttet anpassas till arten man avser att skydda samt till tillväxthastigheten i aktuellt sjö eller vattendrag.

Maximimått

Fönsteruttag

Fönsteruttag är en kombination av minimi- och maximimått. I praktiken innebär det alltså att man endast får behålla fisk mellan exempelvis 40 och 70 cm. Om fisk av annan längd fångas ska den alltså sättas tillbaka så varsamt som möjligt.

Fångstbegränsning ("Baglimit")

Fångstbegränsning, eller som regeln ofta benämns - "baglimit", innebär att man inte får ta upp mer än ett visst antal fiskar. Avsikten med begränsningen är att man inte ska fiska mer fisk än vad vattnet klarar av att producera, samt att anpassa uttaget så att man inte tar upp mer fisk än vad som förbrukas i det egna hushållet. En fångstbegränsning bör med fördel kombineras med lämplig storleksbegränsning.

Fredningstider och fredningsområden

Fredningstid innebär att fisk av en viss art skyddas i hela sjön eller vattendraget, oftast i samband med leken. Detta kan innebära att hela området stängs för fiske eller att det råder fiske- eller fångstförbud för arten.

Fredningsområden innebär att vissa områden skyddas från fiske under en viss period eller hela året. Fiske är därmed möjligt att bedriva i resten av sjön utanför utpekade fredningsområden, även efter den art som är fredad inom fredningsområdena.

Hantering vid återutsättning och fisketillsyn

För att regler som kräver återutsättning av vissa fiskar ska få avsedd effekt krävs att fisk som ska sättas tillbaka hanteras på ett så skonsamt sätt som möjligt för att öka fiskens chans till överlevnad. Därför är det viktigt att nå ut med bra information, inte minst till ovana fiskare (Länsstyrelsen avser att ta fram ett sådant underlag).

Utöver god hantering vid återutsättning behövs också fisketillsyn både i förebyggande och upplysande syfte, samt för att säkerställa att reglerna följs. I samband med att man beslutar om fiskeregler bör man tänka på att reglerna i största män ska vara praktiskt möjliga att följa upp genom fisketillsyn. Kontrollavgift kan införas av fiskevårdsområdet för att fisketillsynsmannen ska kunna utdöma en avgift då någon bryter mot fiskevårdsområdets egna regler. Sveriges fiskevattenägareförbund har tagit fram instruktioner om hur det går till.

Fysiska åtgärder

En viktig del i modern fiskevård är att återställa de naturliga biotoperna och att se till att det finns fria vandringsvägar för fisk och andra vattenlevande organismer. Syftet är att förbättra förutsättningarna för naturlig reproduction och överlevnad. Tidigare riktade sig åtgärderna in tillflödena främst mot ”prickig fisk”. Dagens restaureringsarbete sker brett och med målsättningen att omfatta mycket av den akvatiska fauna och erbjuda såväl upp som nedströmspassager. Vid fråga om fiskvägar anläggs i dagsläget nästan uteslutande så kallade omlöp vilket är bäckliknande passager.

Fisketillsyn

Att fisketillsynen är en del av fiskevården är något som ibland glöms bort eftersom fokus ofta ligger på konkreta fiskevårdstätgärdar. Inte desto mindre är fisketillsynen viktig i sammanhanget eftersom den främjar regleföreningarna av de fiskebestämmelserna som syftar till ett långsiktigt hållbart nyttjande av resursen. En effektiv fisketillsyn kan därmed sägas vara av grundläggande betydelse för en framgångsrik fiskevård. En positiv bieffekt av fisketillsyn är vanligen att försäkringen av fisketillsyn ökar. Tillsynsmannen kan anses vara fiskevårdsmålet avsedda missbruk och är de som träffar de ankar på sjön.

Lagen om fiskevårdsområden och kontrollavgift

En kontrollavgift får inte tas ut om det är uppenbart oskäligt. Som oskäligt räknas bland annat om överträdelsen berott på sjukdom, på ålder eller bristande mognad, orsakats av vilseledande eller missvisande regler. Vid regelöverträdelse av en person som inte har rätt att fiska gäller sedvanligt straffrättslig prövning. Detta innebär således att ingen kontrollavgift kan tas ut för de som fiskar utan gällande fiskekort utan omfattar bara de som bryter mot gällande regler och innehar ett giltigt fiskekort.

I dagsläget finns få rekommendationer gällande kontrollavgiften. Information finns tillgänglig på Sveriges fiskevattenägareförbunds hemsida, www.vattenagarna.se. Där finns möjlighet att beställa blanketter för utfärdande av kontrollavgifter (kontaktperson: bengt@vattenagarna.se, 063-370 54). Sveriges fiskevattenägareförbunds rekommendationer:

- Se över fiskereglerna. Finns det överflödiga regler? Är reglerna otydliga och svåra att efterleva?
- Se över tillsynsorganisationen. Är tillsynsmännen uppdaterade på den senaste lagstiftningen? Är föreningens tillsynspolicy tydlig?
- Finns fiskereglerna formulerade på fiskekortet eller som bilaga? Är reglerna enkelt och entydigt skrivna?

Ersättning till tillsynsmän

Ersättning till tillsynsmännar är ett viktigt incitament för att bedriva tillsyn kontinuerligt. Det är lämpligt att med jämna mellanrum se över ersättningsnivåerna för att ersättningen ska vara skälig i förhållande till det arbete som läggs ner. Tillsyn är tillsammans med lämpliga regler den viktigaste fiskevårdande åtgärden för många insjöar, vilket innebär att rimlig ersättning till fisketillsynsmän inte bör ses som slöseri med resurser.

Bilaga 7. Nätläggningskarta

Figur 1. Nätläggningskarta över Rusken.