Effektscreening – Biologisk effektövervakning i förorenade områden längs Sveriges kust 2017–2018

Lars Förlin, Brita Sundelin, Elena Gorokhova, Marina Magnusson, Johanna Bergkvist, Jari Parkkonen, Åke Larsson, Birgitta Liewenborg, Fredrik Franzén
Rapporttitel och undertitel
Effektscreening – Biologisk effektövervakning i förorenade områden längs Sveriges kust 2017–2018

Rapportförfattare
Lars Förlin1, Brita Sundelin2, Elena Gorokhova3, Marina Magnusson3, Johanna Bergkvist5, Jari Parkkonen1, Åke Larsson1, Birgitta Liewenborg4, Fredrik Franzén4

Utgivare
Institutionen för biologi och miljövetenskap, Göteborgs universitet

Postadress
Box 463, 405 30 Göteborg

Beställare
Naturvårdsverket

Finansiering
Nationell miljöövervakning

Refefererat som

Nyckelord för plats
Skelleftehamn, Sundsvallsfjärden, Norrsundet, Saltsjön, Bräviken, Ronnebyåns mynning, Landskrona och Uddevalla/Byfjorden

Nyckelord för ämne
Hälsotillstånd hos abborre och tånglake; Fortplantning och biomarkörer hos vitmärla; Lysosomal membranstabilitet hos musslakos; Imposex hos snäckor

Tidpunkt för insamling av underlagsdata
2017 och 2018

Sammanfattning
Undersökningarna visar att samtliga metoder inklusive undersökning av hälsotillståndet hos fisk, forplantning och biomarkörer hos vitmärla, lysosomal membranstabilitet hos mussla och imposex hos snäckor med få undantag visade på tydliga effekter i de åtta undersökta och förorenade områdena längs Sveriges kuster. En jämförelse mellan de olika metoderna visar, med undantag för området i Uddevalla/Byfjorden, en tydlig påverkan i resterande undersökta områdena. I Byfjorden noterades mindre stressade musslor och endast låga stadijer av imposex hos snäckor medan fiskhälsan kunde konstateras vara påverkad. Utöver Byfjorden gjordes undersökningar med mer än en av metoderna även i Sundsvallsfjärden, Norrsundet, Bräviken, Ronnebyåns mynning och Landskrona. I dessa områden visar jämförelsen mellan metoderna att samtliga indikerar en tydlig påverkan. Att samtliga metoder ger utslag beror sannolikt på att alla valda undersökningsområden har en mycket komplex och ganska påtaglig föroreningsbelastning vilket innebär att det kan förväntas att de flesta organer som lever i dessa områden kan uppvisa effekter som kan härledas till påverkan av miljöstörande ämnen.

I Sverige är den nationella effektbaserade miljöövervakningen i marin miljö väsentligen inriktad på att undersöka effekter av miljögifter i referensområden. Sådana områden karakteriseras av att de ska ligga på stort avstånd från större befolkningscentra och industrier, eller till exempel inte ligga nära stora flodmynningar. Resultaten från denna studie kompletterar den ordinarie miljöövervakningen i referensområden och visar med stor tydlighet att de undersökta områdena är källor för miljöstörande ämnen till vattenmiljön. Undersökningarna visar också att det är önskvärt att kontinuerlig biologisk effektövervakning kommer igång i något eller några påverkade områden inom ramen för den nationella miljöövervakningen för att parallellt följa förändringar i miljön nära eller en bit från påtagliga, mer eller mindre kontinuerliga föroreningskällor i vårt samhälle. Detta skulle också komplettera Sveriges internationella rapportering av miljödata genom att förutom att rapportera effektdata från referensområden även kunna rapportera data från påverkade/förorenade områden.

Foton/Illustration framsida
Bakgrund, blåmussla och nätsnäcka: Johanna Bergkvist.
Vitmärka: Brita Sundelin
Innehållsförteckning

1. Sammanfattning .. 6
2. Summary ... 8
3. Bakgrund och syfte .. 11
4. Effektparametrar ... 12
 4.1 Fiskhälsa och yngelstatus hos abborre och tånglake ... 12
 4.1.1 Fiskhälsa hos abborre och tånglake ... 12
 4.1.2 Yngelstatus hos tånglake ... 12
 4.2 Fortplantning och biomarkörer hos vitmärka ... 13
 4.2.1 Fortplantning .. 13
 4.2.2 Biomarkörer i vitmärka .. 13
 4.3 Lysosomal membranstabilitet hos blåmussla ... 13
 4.4 Imposex hos stor tusensnäcka och stor nätsnäcka .. 14
5. Bedömningsgrunder ... 14
 5.1 Fiskhälsa och yngelstatus hos abborre och tånglake ... 14
 5.2 Fortplantning och biomarkörer hos vitmärka .. 16
 5.2.1 Missbildade embryo hos vitmärka .. 16
 5.3 Lysosomal membranstabilitet hos blåmussla .. 17
 5.4 Imposex hos stor tusensnäcka och stor nätsnäcka .. 17
6. Material och Metoder ... 18
 6.1 Fiskhälsa och yngelstatus hos abborre och tånglake ... 18
 6.2 Fortplantning och biomarkörer hos vitmärka .. 21
 6.2.1 Fortplantning .. 21
 6.2.2 Biomarkörer .. 22
 6.3 Lysosomal membranstabilitet hos blåmussla .. 23
 6.4 Imposex hos stor tusensnäcka och stor nätsnäcka .. 24
7. Beskrivning av undersökningslokalerna ... 25
 7.1 Skelleftehamn ... 27
 7.2 Sundsvallsfjärden .. 27
 7.3 Norrsundet ... 28
 7.4 Saltsjön ... 28
 7.5 Bråviken .. 29
 7.6 Ronnebyöns mynning .. 29
 7.7 Landskrona ... 30
 7.8 Uddevalla .. 30
8. Resultat och sammanvägda bedömningar per område

8.1 Skelleftehamn
8.1.1 Fiskhälsa hos abborre
8.1.2 Sammanvägda bedömningar

8.2 Sundsvallsfjärd
8.2.1 Fiskhälsa hos abborre
8.2.2 Fortplantning och biomarkörer hos vitmärla
8.2.2.1 Fortplantning
8.2.2.2 Biomarkörer
8.2.3 Sammanvägda bedömningar

8.3 Norrsundet
8.3.1 Fiskhälsa Abborre
8.3.2 Fortplantning och biomarkörer hos vitmärla
8.3.2.1 Fortplantning
8.3.2.2 Biomarkörer
8.3.3 Sammanvägda bedömningar

8.4 Saltsjön
8.4.1 Fiskhälsa hos abborre
8.4.2 Sammanvägda bedömningar

8.5 Bråviken
8.5.1 Fiskhälsa hos abborre
8.5.2 Fortplantning och biomarkörer hos vitmärla
8.5.2.1 Fortplantning
8.5.2.2 Biomarkörer
8.5.3 Imposex hos stor tusensnäcka
8.5.4 Sammanvägda bedömningar

8.6 Ronnebyåns mynning
8.6.1 Fiskhälsa hos abborre
8.6.2 Lysosomal membranstabilitet hos blåmussla
8.6.3 Imposex hos stor tusensnäcka
8.6.4 Sammanvägda bedömningar

8.7 Landskrona
8.7.1 Fiskhälsa och yngelstatus hos tånglake
8.7.2 Lysosomal membranstabilitet hos blåmussla
8.7.3 Imposex hos stor tusensnäcka
8.7.4 Sammanvägda bedömningar

8.8 Uddevalla
8.8.1 Fiskhälsa och yngelstatus hos tånglake
8.8.2 Lysosomal membranstabilitet hos blåmussla
8.8.3 Imposex hos stor nätssnäcka
8.8.4 Sammanvägda bedömningar

9. Slutsatser

10. Erkännande

11. Litteraturreferenser

12. Bilagor
1. Sammanfattning

Den här rapporten sammanfattar resultaten och slutsatserna från Naturvårdsverkets mätkampanj Effektscreening, som var inriktad på att med hjälp av effektbaserade metoder undersöka effekter av miljögifter hos ett antal arter vid åtta påverkade områden längs Sveriges kust. Undersökningarna omfattar hälsotillstånd hos abborre och tånglake, embryonalutveckling och biomarkörer hos vitmärla, lysosomal membranstabilitet hos blämmula och imposex hos snäcka. Kampanjen möjliggjorde således mätningar av en bred uppsättning av biologiska effekter av miljögifter samtidigt, i olika matriser och vid samma platser. Undersökningarna i de påverkade områdena kan fungera som komplement till de mätningar som görs i referensområden inom den återkommande nationella övervakningen av effekter.

Syftet med Effektscreening var i huvudsak:

- att få en överblick över hur allvarliga effekter av miljögifter är på mer förorenade provtagningsplatser jämfört med referensområden.
- att jämföra olika typer av metoder för att mäta effekter av miljögifter.
- att jämföra hur olika organismer svarar på en förändring i belastning av miljögifter.

Fortplantning och biomarkörer hos vitmärla undersökt i tre områden, Norrsundet, Sundsvallsfjärden och Bråviken. Resultaten visar att vitmärlans i Sundsvallsfjärden är mycket tydligt påverkad med kraftigt förhöjd frekvens av missbildningar i båda undersökta lokalerna i Sundsvallsfjärden och en lägre fekunditet, det vill säga färre ägg per hona. Dessutom visar biomarkörresponsen hos djuren i Sundsvallsfjärden tydlig indikation på oxidativ stress, låg metabolisk aktivitet och neurologisk...

Lysosomal membranstabilitet hos blåmussla undersöks i tre områden, Ronneby, Landskrona och Byfjorden. Resultaten visar att musslorna i områdena i Byfjorden nära Uddevallabron klassificeras som stressade men kompenserande, medan musslorna från området vid Ronnebyån som låg nära mynningen och från området nära Landskrona klassificeras som allvarligt stressade. Undersökningen visar således att musslorna från Byfjorden var mindre påverkade än musslorna från Landskrona och Ronneby.

Imposex hos snäckor undersöks i fyra områden. I Bråviken, Ronneby och Landskrona undersöks stor tusensnäcka medan stör nätsnäcka undersöks i Byfjorden. Resultaten visar att samtliga områden (Bråviken, Ronneby och Landskrona) med stor tusensnäcka hamnar inom mättlig status, medan området Byfjorden, med provtagning nära Uddevallabron, klarar god status dock med liten marginal. Undersökningen visar således att även för imposex var påverkan mindre i Byfjorden.

Sammantaget visar resultaten från dessa undersökningar om hälsotillståndet hos abborre och tånglake, fortplantning och biomärken hos vitmärla, lysosomal membranstabilitet hos mussla och imposex hos snäckor som använts inom ramen för naturvårdsverkets kampanj Effektscreening tydliga effekter i samtliga undersökta områden, med undantag för området i Byfjorden. I Byfjorden var musslorna mindre stressade och endast låga stadijer av imposex noterades hos snäckorna medan fiskhälso kunde konstateras vara påverkat. I de övriga områdena där det är möjligt att jämföra de olika metoderna visar således samtliga en tydlig påverkan. Det beror förmodligen på att alla valda undersökningsområden har en mycket komplex föroreningssituation vilket innebär att det är sannolikt att de flesta organismer som lever i dessa områden kan uppvisa effekter som kan härledas till påverkan av miljöstörande ämnen.

I tillägg är bedömning av biologiska effekter av miljöstörande ämnen en nyckelkomponent inom Havsmiljödirektivet. Införande av biologiskt relevanta biomärken inom direktivet har föreslagits som ett sätt att övervaka ej god miljöstatus. Insatser krävs dock för att etablera och validera indikatorer och bedömningskriterier för många av de målorganismer som används i våra effektbaserade övervakningsprogram.
2. Summary

In 2017-2018, the Swedish Environmental Protection Agency commissioned the survey *Effect screening* to investigate biological effects of environmental contaminants in eight polluted hot spot areas along the Swedish coast using established test species. The effect-based methods included health status of fish (perch and eelpout), embryo aberrations and health biomarkers (benthic amphipods), lysosomal membrane stability (blue mussels), and imposex frequency (marine snails).

The main objectives of the *Effect screening* were:

- To provide an overview of the severity of the impacts exerted by environmental pollutants in the polluted areas compared to the reference sites;
- To compare different methods for measuring biological effects of environmental contaminants;
- To compare how different test organisms respond to the pollution load.

Health status in fish was assessed using perch and eelpout. In perch, health status was investigated in six coastal areas, Skelleftehamn, Sundsvallsfjärden, Norrsundet, Saltsjön, Bråviken, and Ronnebyån estuary. In all areas, there was a clear impact on several physiological functions. Growth and reproduction were adversely affected in Sundsvallsfjärden and Saltsjön, whereas condition and growth were affected in Skelleftehamn and Bråviken, and reproduction was affected in Norrsundet. In addition, other functions in perch, such as liver function, ion regulation and immunological status, showed varying degrees of adverse effects in these areas. Some noteworthy observations were very high EROD activity in the fish from Sundsvallsfjärden (indicating high exposure to PAHs), and indication of oxidative stress, particularly in Bråviken and Ronnebyån estuary. In all six areas, the health of perch was impaired with the fish from Sundsvallsfjärden and Ronneby being the most and the least affected, respectively.

Fish health and fry status were investigated in eelpout collected at Landskrona and Byfjorden. In both areas, a clear impact on several physiological functions was seen. In Landskrona, reproduction was adversely affected as indicated by a relatively high proportion of malformed fry as well as biomarkers of neurological disturbance and hormone disorders. A particularly slow growth rate, unbalanced ion regulation, and remarkably high EROD activities in the liver were found in the fish sampled in Byfjorden, whereas there was no impact on the breeding status in this area. For both areas, the final assessment was that fish health was clearly impaired.

Reproduction status and biomarkers in Monoporeia were applied to assess biological effects of contaminants in soft-bottom sediments of three areas, Norrsundet, Sundsvallsfjärden, and Bråviken. Ranking these areas with regard to the embryo aberrations of the amphipods suggests that Sundsvallsfjärden was the most affected, while Norrsundet seems to be the least affected. The frequency of embryo aberrations is used as a national indicator for good environmental status (GES), and all three areas failed to comply with national thresholds. In the contaminated sites, low fecundity was observed, as well as a high rate of embryo aberrations, and significant changes in energy allocation toward reproduction. At the same time, the biomarker responses indicated lower growth capacity, poor oxidative status and neurological effects in the animals sampled from the contaminated sites in comparison with those from the reference sites. To predict exposure status in the surveyed locations, we conducted multivariate modelling and found that combining embryo aberration analysis with the biomarker measurements in amphipods significantly increases reliability of the exposure assessment, which is essential for development and validation of biological effect indicators.
Lysosomal membrane stability of blue mussels was assessed in three areas, Ronneby, Landskrona, and Byfjorden. Mussels that were collected in Byfjorden near the Uddevalla Bridge were classified as stressed but compensating, while the mussels from the areas near Ronnebyån estuary and Landskrona were classified as severely stressed. Thus, mussels from Byfjorden were less affected than those from Landskrona and Ronneby.

Imposex in gastropods was assessed in four areas. Mud snail was used for the assessment in Bråviken, Ronneby, and Landskrona, while netted dog whelk was used in Byfjorden. The animals from Bråviken, Ronneby and Landskrona show moderate status, while those from Byfjorden area, near Uddevallabron, were in good status, albeit, with a small margin.

Taken together, the results for all test organisms, i.e., fish, amphipods, blue mussels and snails, used in the Effect screening campaign suggest moderate to severe impacts on the animal health in all areas studied. Moreover, assessments based on different methods generally agreed with each other. This is, probably, because all screened areas have very complex pollution situations, and most organisms inhabiting these areas, regardless of the habitat, are exposed to environmental pollutants.

Our results indicate that coastal areas act as sources of environmentally harmful substances to the aquatic environment. Screening surveys in such polluted areas can serve as a complement to the regular monitoring of biological effects of exposure conducted by the Swedish national effect-monitoring program. We believe that it is desirable to initiate biological effect monitoring in the areas with known current or historical pollution sources. This would enable a better understanding of the environmental health assessment as well as support Sweden’s international commitment on reporting environmental monitoring data both from reference and polluted areas.

The survey outcome contributes to the assessment of biological effects of contaminants, which is a key component within the Marine Strategy Framework Directive. Incorporation of ecologically relevant biomarkers into environmental monitoring programs and development of sensitive biological effect indicators have been advocated as a pragmatic means of linking environmental health with pollution loads. Efforts are needed to establish effect-based monitoring tools, validate such indicators and improve assessment criteria of the biomarker responses in target species used in our monitoring programmes.
Effektscreening – Biologisk effektövervakning i förorenade områden längs Sveriges kust 2017–2018

Foto: Johanna Bergkvist
3. Bakgrund och syfte

Inom svensk miljöövervakning undersöks hur miljön påverkas av gifter i ett antal olika typer av studier. Klassiska/kända miljögifter mäts återkommande i organismer och sediment för att följa hur halter förändras i tid och rum. Dock är det endast ett mindre antal ämnen som därmed kan mätas. För att komplettera denna bild och få information om ett betydligt större antal av de tiotusental kemiska ämnen som riskerar att hamna i miljön genomförs screeningar av ämnen eller grupper av ämnen i olika matriser. Urvalet baseras på ämnenas kemiska egenskaper och användning i samhället. Prover samlas även i en miljöprovbank vilket gör det möjligt att gå tillbaka i tiden för att analysera nya miljögifter.

I Naturvårdsverkets regi utförs med några års mellanrum riktade mätkampanjer inom miljöövervakning av miljögifter. 2017 års mätkampanj var inriktad på effekter av miljögifter i ett antal arter (fiskhälsa, embryonalutveckling hos vitmärla, lysosomal membranstabilitet hos mussla och imposex hos snäcka) på åtta särskilt påverkade provtagningsplatser längs Sveriges kust. Kampanjen möjliggjorde mätningar av en bred uppsättning av biologiska effekter av miljögifter samtidigt, i olika matriser och vid samma lokaler. Undersökningarna i de särskilt påverkade områden kan fungera som komplement till de mätningar som görs i referensområden inom den återkommande övervakningen av effekter.

Syftet med Effektscreeningen var i huvudsak:

- att få en överblick över hur allvarliga effekter av miljögifter är på mer förorenade provtagningsplatser jämfört med referensområden.
- att jämföra olika typer av metoder för att mäta effekter av miljögifter.
- att jämföra hur olika organismer svarar på en förändring i belastning av miljögifter.

I tillägg:

- genererar undersökningen värdefull information om miljötillståndet, underlag för bedömningsgrunder och eventuellt också underlag för riskbedömningar enligt EU:s vatten- och havsmiljödirektiv.
- kan undersökningen även bidra till att ge förslag på biologiska indikatorer inom Havsmiljödirektivets deskriptor 8 Koncentrationer och effekter av farliga ämnen.
- kan resultaten också användas i arbetet med tillsyn och prövning på länsstyrelserna och som ett svenskt bidrag till OSPAR:s integrerade effektövervakning.
- bidrar projektet till att testa utvalda variabler, t.ex. HELCOM:s pre-core indikator lysosomal membranstabilitet och HELCOMs supplementära indikator reproduktionsstörningar hos vitmärla.

Undersökningen ger underlag för uppföljning av miljömålen Hav i balans och Giftfri miljö.
4. Effektparametrar

4.1 Fiskhälsa och yngelstatus hos abborre och tånglake

4.1.1 Fiskhälsa hos abborre och tånglake

Sverige har sedan många år använt biokemiska och fysiologiska metoder (så kallade biomarkörer) för att studera hälsoeffekter hos fisk som exponerats för enskilda miljögifter eller avloppsvatten. På så sätt har hälsoundersökningar av fisk med hjälp av biomarkörer avslöjat effekter av miljögifter eller komplexa utsläpp i förorenade recipenter. Det har handlat om förlopp som har tagits upp av organismen och olika försvarsmechanismer har aktiverats och i effektmarkörer som visar att olika fysiologiska funktioner är påverkade. Det betyder att biomarkörer på individnivå kan visa att fisken har exponerats för kemiska ämnen, visa att fisken är uppenbart stressad av något i miljön. Biomarkörerna kan inte identifiera vilka miljögifter som ger signaler om påverkan, men kan ge viss information om vilka ämnesgrupper det kan röra sig om.

4.1.2 Yngelstatus hos tånglake

4.2 Fortplantning och biomarkörer hos vitmärla

4.2.1 Fortplantning

4.2.2 Biomarkörer i vitmärla

Subcellulära och enzymatiska biomarkörer har utvecklats och analyserats i vitmärlan under de senaste åtta åren och resultaten från dessa undersökningar visar att det finns ett samband mellan embryoskador och effekter på dessa biomarkörer. Genom att kombinera reproduktionsvariabler hos vitmärlan med olika markörer på enzymatisk och subcellulär nivå får vi ökad information om orsak och verkan hos organismerna samt ökar känsligheten av hälsotillståndsbedömningen i populationer av vitmärla.

4.3 Lysosomal membranstabilitet hos blåmussla

Studier av lysosomal membranstabilitet (LMS) används som biomarkör och indikator för stress orsakad av föroreningar hos en mängd olika marina djur (Moore et al., 2006, Lowe et al., 1995). Lysosomer är intracellulära organeller involverade i nedbrytning av material som kommer in i cellen. Nedbrytningen kan ha olika funktioner såsom matsmältning eller immunförsvar. Förändringar i cellernas kapacitet att ta upp ett tillsatt färgämne (neutralrött) kan användas som en indikator på cellskador. Detta sker eftersom de friska och opåverkade cellerna kan ta upp och behålla större mängder färgämne i lysosomerna under längre tid än celler påverkade av föroreningar. Tekniken att färga in celler och analysera hur länge de kan hålla färgen innan läckage genom lysosomernas membran uppstår är en enkel och icke-destruktiv metod där musslorna kan återföra till sin naturliga miljö efter försiktig insamling, transport och provtagning.

LMS är en globalt accepterad biomarkör som rekommenderas av International Council for the Exploration of the Sea (ICES) och används i ett flertal länder, exempelvis Spanien, Norge och Danmark, då det möjliggör en övergripande bild av miljögifters påverkan och utbredning i ett område. I Sverige ingår i nuläget inte LMS i övervakningsprogram för miljögifter.
4.4 Imposex hos stor tusensnäcka och stor nätsnäcka

Imposex är en effektparameter som innebär en gradvis utveckling av en pseudopenis och sädesledare hos snäckhonor till följd av exponering av organiska tennföreningar och främst då tributyltenn (TBT). För analys av imposex används Vas Deferens Sequence Index (VDSI), vilket är summan av imposexstadien hos alla insamlade honor på en lokal delat med antalet undersökta honor. Snäckorna påverkas genom att TBT stör hormonsystemet hos snäckorna och orsakar ökade nivåer av det hanliga könhormonet testosteron vilket i sin tur ger upphov till bildandet av en pseudopenis och/eller sädesledare hos honorna. Effekterna kan induceras vid så låga halter av TBT som 1 ng/l vatten (Mathiessen & Gibbs, 1998). Olika snäckarter är olika känsliga vissa arter påverkas inte alls medan andra kan påverkas så kraftigt att honorna blir steril. Det finns ett hundratal arter runt om i världen där imposex har kunnat påvisas. Analys av imposex är således en mycket bra effektparameter för övervakning av organiska tennföreningar och användes frekvent inom miljöövervakning även internationellt. I Sverige har övervakningen av effekter från organiska tennföreningar pågått sedan 2003 och i dagsläget undersöks totalt 28 lokaler. I nordiska vatten används vanligen fem arter beroende på typ av område som skall övervakas samt vilken art som går att finna i området. I grunda områden på västkusten används stor nätsnäcka (Tritia nitida) vid tolv lokaler; åtta lokaler är fördelade inom två grader (Göteborg och Brofjorden); tre lokaler avser referensområden och en lokal avser en punktkälla i form av en fiskehamn på Hallandskusten. I egentliga Östersjön där salthalten är för låg för att stor nätsnäcka skall kunna överleva nyttjas istället stor tusensnäcka (Peringia ulvae). Stor tusensnäcka provtas vid totalt 16 lokaler, vilka är fördelade på referensområden, punktkällor samt naturhamnar.

5. Bedömningsgrunder

5.1 Fiskhälsa och yngelstatus hos abborre och tånglake

Tabell 1. I bedömningen av fiskhälsa görs för varje fysiologisk funktion på en tregradig skala. En oacceptabel påverkan bedöms föreligga i en funktion om minst tre ingående parametrar avviker signifikant från referenslokalens värden. Om två funktioner visar oacceptabel störning betyder det att fiskens hälsa bedöms vara nedsatt. Några parametrar viktas högre i modellen därför bedöms fiskhälsan som påverkad om resultaten visar stord fortplantning, minskad tillväxt eller reducerad kondition.

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Parameter/biomarkör</th>
<th>Ingen/obetydlig påverkan</th>
<th>Påverkan</th>
<th>Oacceptabel störning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortplantning/kondition</td>
<td>GSI, Vtg, CF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energi</td>
<td>LSI, glukos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverfunktioner</td>
<td>EROD, GR, GST, Katalas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunförsvar</td>
<td>Vita Blodceller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematologi</td>
<td>Ht, Hb, iRBC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jonreglering</td>
<td>Na, K, Cl, Ca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervfunktion</td>
<td>AChE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 2. Background Assessment Criteria (BAC) och Environmental Assessment Criteria (EAC) responsnivåer för reproduktionsframgång hos fisk beräknat som medelprevalens (%) av Tidig döda yngel, Sent döda yngel, Missbildade yngel och Onormala yngel totalt (Andersson, 2014).

<table>
<thead>
<tr>
<th>Typ av onormal utveckling</th>
<th>BAC respons</th>
<th>EAC respons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidigt döda yngel</td>
<td>2,5%</td>
<td>5%</td>
</tr>
<tr>
<td>Sent döda yngel</td>
<td>2%</td>
<td>4%</td>
</tr>
<tr>
<td>Missbildade yngel</td>
<td>2,5%</td>
<td>2%</td>
</tr>
<tr>
<td>Onormala yngel, totalt</td>
<td>5%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Förklaring av förkortningar i kolumnen Parameter/Biomarkör i Tabell 1:
- **GSI** = gonadosomatisk index (gonadvikten i % av kroppsviken);
- **Vtg** = vitellogenin (bildar gulans, näringen i ägget);
- **CF** = konditionsfaktor (ratio mellan kroppsvikt och kroppslängd);
- **LSI** = leversoematiskt index (levervikten i % av kroppsviken);
- **glukos** = blodsockerhalten;
- **EROD** = etoxyresorufin O-deetetylases (avgiftningsenzym);
- **GR** = glutationreduktas (enzym i oxidantförsvar);
- **GST** = glutation S-transferas (avgiftningsenzym och enzym i oxidantförsvar);
- **Ht** = hematokrit (volymmått på röda blodceller);
- **Hb** = hemoglobin (binder syret i blodet);
- **iRBC** = omogna röda blodceller;
- **Na** = natrium (saltkomponent i blodplasman);
- **K** = kalium (saltkomponent i blodplasman);
- **Cl** = klorid (saltkomponent i blodplasman);
- **Ca** = kalcium (saltkomponent i blodplasman);
- **AChE** = acetylkolinesteras (enzym som bryter ner transmittor substansen acetylkolin).

Yngelkontrollen av tånglake gjordes enligt undersökningstyp ”Reproduktionskontroll – Tånglake” (Andersson, 2014). I testet undersöker man bland annat storlek på yngel, skador och missbildningar hos yngel, och antal döda yngel. Det har föreslagits responsnivåer för BAC Background Assessment Criteria (BAC) och Environmental Assessment Criteria (EAC) beräknat som medelprevalens (%) för tidigt döda yngel sent döda yngel, missbildade yngel och onormala yngel totalt, där onormala yngel totalt är summan av de tre övriga (Tabell 2). I Sverige har yngelkontroll gjorts under många år inom ramen för integrerad kustfiskövervakning.
5.2 Fortplantning och biomarkörer hos vitmärla

5.3.1 Missbildade embryon hos vitmärla

Inom HELCOMs indikatorarbete har det tagits fram bedömningsgrunder för missbildade embryon av vitmärla (Reutgard och Sundelin 2014, HELCOM 2018) men för biomarkörer har detta arbete bara påbörjats. Vid framtagandet av bedömningsgrunder för missbildade embryon av vitmärla har data från den nationella miljöövervakningen använts som underlag. Den nationella övervakningen har pågått sedan 1994 fram till 2011 (fem stationer i Bottenhavet och nio stationer i Asköområdet) då programmet reviderades och utökades med fler stationer (totalt 30 st.) längs kusten. Urvalet innehåller 8 622 honor med drygt 230 000 embryon.

Eftersom gränsvärden baseras på en percentil har provstorleken (antal honor/station) en avgörande betydelse för var gränsvärdet hamnar. En högre provstorlek ger mindre varians till följd av slumpvisa fel och därför också en mindre spridning. Eftersom provstorleken varierade stort från år till år och från station till station, har bootstrapping använts, där provstorleken kan kontrolleras. En provstorlek på 50 honor har använts (som motsvarar ca 1 500 embryon) vilket är den rekommenderade provstorleken i det nationella provtagningsprogrammet. Den slumpmässiga provtagningen av 50 honor i datauvalet upprepades 100 000 gånger för att få en jämn spridning. Resultatet visar att totala andelen missbildade, membranskadade och outvecklade embryon är i genomsnitt 4,1 %. Den 90:e percentilen har använts i likhet med de flesta andra bedömningsgrunder för biologiska effekter (Davies och Veethak 2012) och hamnar vid 5,9 % för summan av missbildade, membranskadade och outvecklade embryon (Tabell 3).

Förutom att bedöma andelen missbildade embryon analyseras även andel honor med missbildade embryon. En sammenställning av data från påverkade områden och utvalda övervakningsdata från det nationella programmet visar att man har störst chans att upptäcka statistiskt säkerställda skillnader mellan påverkat och opåverkat område genom att jämföra andel honor med fler än ett missbildat embryo. Slumpvis upprepad provtagning (100 000 gånger) av 50 honor visar att andelen honor med fler än ett missbildat embryo är i genomsnitt 23 % och 90 percentilen är 30 % (HELCOM 2018).

För att förutsäga exponeringen i de undersökta områdena gjordes en multivariat modell. Modellen visade att genom en kombinering av embryoanalyserna med biomarkörsmätningar i vitmärlorna erhölls en signifikant ökning av trovärdigheten av bedömningen, vilket är nödvändigt för utveckling och validering av biologiska effekt indikatorer, se vidare Figur 6 i Bilaga 2.

<table>
<thead>
<tr>
<th>Bedömningsgrunder</th>
<th>Medelvärde</th>
<th>Bakgrunds nivå</th>
<th>Förhöjt värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andelen missbildade embryon</td>
<td>4,1 %</td>
<td>0 – 5,9 %</td>
<td>> 5,9 %</td>
</tr>
<tr>
<td>Andelen honor med >1 missbildat embryo</td>
<td>23 %</td>
<td>0 - 30 %</td>
<td>> 30 %</td>
</tr>
</tbody>
</table>
5.3 Lysosomal membranstabilitet hos blåmussla

Bedömningsgrunderna för lysosomal membranstabilitet (LMS) baseras på retentionstiden för neutralrött (neutral red retention time, NRRT), det vill säga hur länge lysosomerna behåller färgämnet innan läckage uppstår. En retentionstid på mer än 120 minuter innebär att musslor inte är stressade (bakgrundsvärde). Retentionstider mellan 120 och 50 minuter visar på musslor som stressade men kompenserande är. En retentionstid på mindre än 50 minuter tyder på att musslorna är allvarligt stressade (Davies *et al.*, 2012) (Tabell 4). För poängsättning enligt % LMS finns ännu inga bedömningsgrunder.

Tabell 4. Gränsvärden för bedömning av LMS baserat på retentionstid för neutralrött (NRRT) i blåmussla.

<table>
<thead>
<tr>
<th>ICES (2012)*</th>
<th>Ej stressad</th>
<th>Stressad men kompenserande</th>
<th>Allvarligt stressad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alla arter (NRRT)</td>
<td>>120</td>
<td>120–50</td>
<td><50</td>
</tr>
<tr>
<td>God</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ej god</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alla arter (NRRT)</td>
<td>>120</td>
<td></td>
<td><120</td>
</tr>
</tbody>
</table>

5.4 Imposex hos stor tusensnäcka och stor nätsnäcka

För imposex hos stor nätsnäcka respektive stor tusensnäcka används bedömningsgrunderna som rekommenderas av OSPAR. Inom OSPAR har ett klassificeringssystem tagits fram som ska kunna användas av alla ingående länder, trots olikheter vad gäller artförekomst och geografiska förutsättningar. Systemet består av sex klasser med integrerade värden för TBT-halter i vatten och sediment. Av våra nordiska grannländer har Danmark det mest omfattande programmet vilket innefattar prövtagning av totalt fem arter i både kust och utsjö. Danmark har arbetat vidare med att utveckla miljökvalitetskriterierna för imposex, och anpassat dem till den femgradiga skala som används inom vattendirektivet. Även inom HELCOM-arbetet används imposex som en indikator för TBT, gränsvärdena som används är dock ännu inte helt fastställda. Vid bedömningar enligt HELCOM används endast två graderingar dvs god eller ej god status. VDSI över 0,3 hos stor nätsnäcka respektive VDSI över 0,1 hos stor tusensnäcka bedöms som ej god status. Detta gränsvärde överensstämmer även med gränsvärdet mellan god och måttlig status enligt OSPAR (Tabell 5). Imposex ingår även som en biologisk indikator inom Havsmiljödirektivets (HMD) descriptorn 8 Koncentrationer och effekter av farliga ämnen, där tröskelvärdena motsvarar HELCOMs.

Tabell 5. Gränsvärden som har använts för statusbedömning med avseende på förekomst av imposex uttryckt som VDSI i nätsnäcka och stor tusensnäcka.

<table>
<thead>
<tr>
<th>OSPAR (2009)*</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakgrund</td>
<td>God</td>
<td>Måttlig</td>
<td>Otilfredsställande</td>
<td>Dålig</td>
<td></td>
</tr>
<tr>
<td>Stor nätsnäcka</td>
<td>< 0,3</td>
<td>0,3 - < 2</td>
<td>2 - 3,5</td>
<td>>3,5</td>
<td></td>
</tr>
<tr>
<td>Stor tusensnäcka</td>
<td>< 0,1</td>
<td>0,1 - < 1</td>
<td>1 - 2</td>
<td>>2</td>
<td></td>
</tr>
<tr>
<td>HMD och HELCOM**</td>
<td>God</td>
<td>Ej god</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stor nätsnäcka</td>
<td>< 0,3</td>
<td>> 0,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stor tusensnäcka</td>
<td>< 0,1</td>
<td>> 0,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Föreslagna men inte fastställda gränsvärdena inom HELCOM.
6. Material och Metoder

Under detta avsnitt ingår hur insamling av provmaterial för de olika delundersökningarna, abborre, tånglake, snäcka och mussla har gått till och vilka analyser som gjorts.

6.1 Fiskhälsa och yngelstatus hos abborre och tånglake

Göteborgs universitet, Institutionen för biologi och miljövetenskap, ansvarade för delundersökningen ”Abborre och tånglake: Fiskhälsa med fysiologi, biomarkörer och yngelstatus”, och genomförde den tillsammans med Sveriges Lantbruksuniversitet, Institutionen för akvatiska resurser. Provtagning, provberedning och analyser gjordes enligt beskrivningar i undersökningstyp ”Hälsotillstånd hos kustfisk – biologiska effekter på subcellulär och cellulär nivå” (Larsson och Förlin, 2006). Vilka effekt- och exponeringsvariabler som ingår i undersökningen av fiskens hälsotillstånd framgår av Tabell 6. All data presenteras som medelvärde ± standardfel. För att undersöka om signifikanta skillnader mellan grupperna fanns utfördes ANOVA (p<0,05) med efterföljande posthoc-test (Bonferroni) för att ta reda på var de signifikanta skillnaderna fanns.

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Mätvariabel/biomarkör</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energilagring, tillväxt, kondition</td>
<td>Total kroppsvikt, somatisk vikt, längd, ålder, somatisk konditionsfaktor (CF)</td>
</tr>
<tr>
<td>Fortplantning, hormonstörning</td>
<td>Gonadsomatiskt index (GSI), vitellogenin (Vtg) i blodplasma</td>
</tr>
<tr>
<td>Leverfunktion, avgiftning, oxidativ stress</td>
<td>Leversomatiskt index (LSI), EROD-aktivitet, aktiviteterna av glutationreduktas (GR), glutation S-transferas (GST) och katalas</td>
</tr>
<tr>
<td>Kolhydratmetabolism/stress</td>
<td>Blodglukos</td>
</tr>
<tr>
<td>Syretransport, blodbildning</td>
<td>Hematokrit (Ht), omogna röda blodceller (iRBC), hemoglobin (Hb)</td>
</tr>
<tr>
<td>Immunförsvar, vävnadsskador</td>
<td>Vita blodceller (WBC): lymfocyter, granulocyter, trombocyter</td>
</tr>
<tr>
<td>Saltbalans, cellskador</td>
<td>Klorid (Cl), natrium (Na), kalium (K) och kalcium (Ca) i blodplasma</td>
</tr>
<tr>
<td>Exponeringsindikator</td>
<td>EROD-aktivitet, GR-aktivitet, GST-aktivitet, katalasaktivitet,</td>
</tr>
<tr>
<td>Fortplantningskontroll</td>
<td>Yngelstatus (tånglake)</td>
</tr>
</tbody>
</table>
Figur 1. Det tas många olika prover för att undersöka fisken hälsotillstånd. Blodprov tas för att ta reda på om fisken lider av blodbrist, och om de har rätt mängd salter i blodet och rätt andel vita blodceller. Vid provtagningen vägs och mäts fisken och olika organ som lever, njure, tarm och galla tas ut och fryses för att analyseras senare. Foto: Lars Förlin.

Undersökningen på tånglake genomförs under senhösten och oftast i november då ynglen har en storlek som är tillräcklig för att eventuell miljöpåverkan skall ha hunnit påverka ynglen men tillräckligt långt innan ynglen är mogna att släppas av honan. Undersökningsmetoden har tillämpats i förorenade områden såväl som i opåverkade referensområden (Andersson, 2014). Det görs ofta en samordning med övervakning av relevanta påverkansfaktorer såsom belastning av miljögifter, fiskhälsa och beståndsstatus hos tånglake. Vid undersökningen mäts antal, storlek, skador och missbildningar hos yngel, och antal döda yngel (Figur 2).
6.2 Fortplantning och biomarkörer hos vitmärla

6.2.1 Fortplantning

För insamlingen av vitmärlor användes en bottenskrapa eller Van Veen huggare. Det är optimalt att analysera 50 gravida honor. Eftersom vitmärlan är en kallvattenart är det viktigt att vattentemperaturen inte överstiger 7–8 °C.

Figur 3. (A) gravid vitmärle Monoporeia affinis, (B) normala embryon, (C) missbildade embryon, (D) död äggsamling, (E) membranskadade embryon och (F) embryon med avstannad utveckling. Foto: Brita Sundelin.
6.2.2 Biomarkörer
Levande honor fryses i flytande kväve omedelbart efter att embryoanalysen genomförts. För olika biomarkörer och deras funktion se Tabell 7.

Tabell 7. Effekt- variabler/ indikatorer som ingår i undersökning av vitmärlans hälsotillstånd (Sundelin och Eriksson 1998, Löf et al., 2016a, 2016b).

<table>
<thead>
<tr>
<th>Mätvariabel</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortplantning</td>
<td></td>
</tr>
<tr>
<td>Fekunditet</td>
<td>Antal ägg per hona</td>
</tr>
<tr>
<td>Utvecklingsgrad hos embryon</td>
<td>Stadie 1 till 9 (från 2 celler till nykläckt juvenil)</td>
</tr>
<tr>
<td>Missbildade embryon</td>
<td>Olika typer som t.ex. membranskadade embryon</td>
</tr>
<tr>
<td>Döda respektive befruktade/outvecklade embryon</td>
<td>Avstannad utveckling då tillväxten avstannat innan gastrulation (celler differentieras och ger upphov till olika vävnader och organ)</td>
</tr>
<tr>
<td>Döda eller partiellt döda äggsamlingar hos honan</td>
<td>Embryon som dör i ett tidigt skede av utvecklingen och kvarstår i marsupiet (äggkammanen) som en oidentifierbar lipidrest</td>
</tr>
<tr>
<td>Biomarkörer</td>
<td></td>
</tr>
<tr>
<td>Proteinhalt</td>
<td>Total mängd av protein per hona (utan embryon); ett mått på kroppstorlek</td>
</tr>
<tr>
<td>RNA/DNA och RNA/Protein</td>
<td>RNA-till-DNA-kvot och RNA-till-Protein-kvot är ett mått på cellernas kapacitet att syntetisera proteiner</td>
</tr>
<tr>
<td>DNA/Protein kvot</td>
<td>DNA-till-Protein-kvot är ett mått på cellstorlek i hona</td>
</tr>
<tr>
<td>ORAC/Protein och ORAC/DNA</td>
<td>Oxygen Radical Absorbance Capacity (totalt oxidativt försvar) är ett mått på antioxidantkapacitet normaliserat till protein eller antal celler</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric Acid Reactive Substances; mått på lipidoxidering och därmed ett mått på oxidativ stress</td>
</tr>
<tr>
<td>ORAC/TBARS</td>
<td>Balans mellan antioxidantkapacitet och oxidativa processer</td>
</tr>
<tr>
<td>AChE</td>
<td>Acetylkinolnerasaktivitet; både inhibering och stimulering indikerar störningar som påverkar receptorfunktionen, pre- eller postsynaptiska funktioner</td>
</tr>
</tbody>
</table>
6.3 Lysosomal membranstabilitet hos blåmussla

Musslorna analyserades även med poängsättning av olika avvikelser. Varje avläsning ger en poäng mellan 0-5 där 0 motsvarar avsaknad av avvikelser eller läckage. Det är inte en gradering från 0-5p vid ökad stress utan förändringarna kan variera. Där mer än hälften av musslorna uppvisar avvikelser poängsätts lysosomernas utseende beroende på den dominerande avvikelsen enligt;

0p - Ingen effekt
1p - Förstoring men inget läckage
2p - Läckage men ingen förstoring
3p - Läckage och förstoring
4p - Läckage och förstoring men färglösa lysosomer
5p - Avrundning och fragmentering av celler

De olika poängen kan indikerar förekomst av olika föroreningar. Lysosomala förändringar enligt 1p och 3p indikerar en exponering för PCB-liknande ämnen medan 5p indikerar påverkan av metaller.

![Figur 4. Schematisk bild av förstoring och läckage från lysosomer. Bild anpassad från: BEQUALM Lysosomal Stability Workpackage 8, Plymouth Marine Laboratory.](image)

6.4 Imposex hos stor tusensnäcka och stor nätsnäcka

Fältprovtagning av stor tusensnäcka utfördes under juni-juli och av stor nätsnäcka i september. Snäckorna fångades in på ett djup av 0,5–2,0 meter och metodik för fångst varierade med art. Stor nätsnäcka samlades in med hjälp av fällor betade med fisk medan stor tusensnäcka plockades upp ifrån substrat eller växtlighet som skrapades upp från botten med hjälp av en håv. De djur som analyserades valdes utifrån storlek och skalskick för att få en representativ åldersklass från varje lokal. Alla längdparametrar mättes med en noggrannhet av 0,01 mm. Utvecklingen av imposex kan delas in i sju olika stadijer (0–6) där 0 är en normal hona och 4 och högre stadijer är en hona med penis och en sådesledare som sträcker sig fram till eller förbi honans könsöppning, honans könsöppning kan även i vissa fall vara igenväxt vilket innebär att hon är steril. De tidigaste stadierna av imposex kan se olika ut och följer olika utvecklingslinjer (a, b och c) men vanligen ses en påbörjan till en penis (1a) alternativt en sådesledare (1b). VDSI för varje lokal beräknas genom att ta summan av antalet snäckor för varje stadium (0–6) gånger stadiets värde (0–6) och dela detta med antalet analyserade honor. En lokal med ett högt VDSI indikerar således en mycket påverkad lokal.

Figur 5. Överst ses insamlad stor nätsnäcka (vänster) och stor tusensnäcka (höger), nedan ses uppsättning för analys samt en hona av arten stor nätsnäcka med det högsta stadiet av imposex. Foto: Marine Monitoring AB©.
7. Beskrivning av undersökningslokalerna

Urvalet av undersökningsområden initierades med att berörda Länsstyrelser föreslog påverkade områden där typen av påverkan skulle vara väl känd. Länsstyrelserna fick även göra en prioriteringsordning på sina förslag. Därefter gjorde utföraren av effektparametern tillsammans med Naturvårdsverket en prioritering bland dessa provtagningsplatser. Fokus lät på att både få med områden med stora specifika punktkällor med en väl dokumenterad utsläppsbild (såväl dagens kända utsläpp som gamla synder) och områden med en generell komplex förorenings situation med många källor som speglar dagens kemikaliesamhälle.

Stor vikt lades också på spridning över landet, men även på logistik det vill säga att provtagningarna inom denna mätkampanj kunde samordnas med de nationella årliga övervakningsprogrammens provtagningar dels för att underlätta arbetet/minska kostnader men också för att få bra referenslokaler att jämföra med. Det var även viktigt att det var möjligt att samla in till så många undersökningar/organismer som möjligt vid provtagningsplatsen.

De områden som slutligen valdes var Skelleftehamn, Sundsvallsfjärden, Norrsundet, Saltsjön, Bråviken, Ronnebyåns mynning, Landskrona och Uddevalla (Tabell 8, Figur 6) och beskrivs nedan.

<table>
<thead>
<tr>
<th>Tabell 8. Tabell över vilka organismer som har studerats i respektive område.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undersökningsområde</td>
</tr>
<tr>
<td>1 Skelleftehamn</td>
</tr>
<tr>
<td>2 Sundsvallsfjärden</td>
</tr>
<tr>
<td>3 Norrsundet</td>
</tr>
<tr>
<td>4 Saltsjön</td>
</tr>
<tr>
<td>5 Bråviken</td>
</tr>
<tr>
<td>6 Ronnebyåns mynning</td>
</tr>
<tr>
<td>7 Landskrona</td>
</tr>
<tr>
<td>8 Uddevalla</td>
</tr>
</tbody>
</table>
Effektscreening

Parameter
- Imosex
- LMS
- Vitmårla
- Fiskhälsa
- Referens Vitmårla
- Referens Fiskhälsa

7.1 Skelleftehamn

7.2 Sundsvallsfjärden

tikloretylen), metaller (Hg, Cd, Pb, As, Cr, Cu), klorerade bekämpningsmedel (DDT, HCB m.fl.), dioxiner, PFOS och PCB:er.

7.3 Norrsundet

Idag anses inga pågående källor bidra till föroreningssituationen i Norrsundet. Snarare är det de gamla synderna som ligger kvar i sedimenten som påverkar miljön. Norrsundet uppnår inte god kemisk status på grund av överskridanden av gränsvärdena för bland annat antracen och kadmium i sediment, samt dioxiner i fisk. Norrsundet är även påverkad av övergödning och dess ekologiska status klassificeras som otillfredsställande på grund av de fynd som gjorts av bottenfauna.

7.4 Saltsjön

7.5 Bråviken

Bråviken är en långsmal havsvik som sträcker sig från Norrköping i väst mot Oxelösund och Arkösund i öst. I det vidsträckta mynningsområdet sker intransport av saltare havsvatten längs det djupare kustområdet i norr, medan uttransporten av det lättare mindre salta vattnet mestadels sker längs det grundare, sydliga kustområdet.

Motala ströms avrinningsområde är 15 481 km², vilket är det näst största avrinningsområdet i Götaland. Bråviken har under lång tid varit receptör för utsläpp av dag- och spillvatten från tätorter och industriverksamhet i Norrköping och längs med Motala ström. I Norrköping har produktionen av pappersmassa, textilindustri och hamnverksamhet bedrivits under lång tid. De tidigare stora utsläppen har lett till förhöjda föroreningshalter i Bråviken.

De inre delarna av Bråviken uppnår inte god kemisk status på grund av överskridanden av gränsvärdena för TBT och antracen i sediment, samt PBDE:er och kvicksilver i fisk. Även det nya gränsvärdet för koppar i sediment överskrids. De inre och mellersta delarna av Bråviken är kraftigt påverkade av övergödning och har därför otillfredsställande ekologisk status. Miljösituationen är något bättre i den yttre delen av Bråviken som har måttlig ekologisk status.

7.6 Ronnebyåns mynning

Ronnebyfjärden präglas av grunda vikar och en inre skärgård med mindre öar. Den största tillförseln av sötvatten sker via Ronnebyån, men det finns dessutom flera mindre vattendrag som tillför vatten till kusten. Ronnebyåns avrinningsområde är ca 1100 km² och utgörs till 80 % av skogsmark, 10 % av sjöar, vattendrag och våtmarker och drygt 5 % av jordbruksmark. I de sydligaste delarna längs Ronnebyån ligger Kallinge och Ronneby. Båda tätorterna har tidigare präglats av tung industri. Idag är flertalet nedlagda, men det finns fortfarande tillverkning av till exempel golvlaminat. Det finns ett flertal förorenade områden alldeles i anslutning till vattendraget, från pappersindustri, ytbehandling, metallindustri, kemisk industri med mera. Ronnebys avloppsreningsverk ligger några hundra meter uppströms från mynningen.

7.7 Landskrona

Landskrona tätort ligger intill två kustvattenförekomster, den största delen av tätorten gränsar till en del av norra Öresunds kustvatten och en del gränsar till Lundåkrabukten. Båda har måttlig ekologisk status med avseende på bottenfauna och växtplankton eller med avseende på växtplankton. Vad gäller miljögifter uppnår Öresunds kustvatten (som täcker kustområdet från Landskrona och norröver) inte god status med avseende på antracen, bly och TBT till följd av lokala utsläpp och Lundåkrabukten (som täcker kuststräckan från Landskrona och söderut) uppnår inte god status med avseende på antracen till följd av lokala utsläpp.

Betydande påverkanskällor som utpekats i Öresunds kustvatten är ett återvinningsföretag inom stålbranschen, Befesa Scandust, med avseende på arsenik, kadmium, koppar, krom, nickel, bly och zink, Yara som tillverkar växtnäringssmeder med avseende på nickel, ett gasverk med avseende på arsenik, kadmium, nickle, zink, bensen, trikloretylen/trikloreten, tetrakloretylen/tetrakloretlen, och trafiken av fritidsbåtar med avseende på TBT.

Utpekade betydande påverkanskällor i Lundåkrabukten är Lundåkraverket, det kommunala reningsverket, med avseende på zink, Boliden Bergsöe AB, som återvinner bly från bilbatterier, med avseende på bly och kadmium och transport och infrastruktur med avseende på antracen och TBT.

7.8 Uddevalla

8. Resultat och sammanvägda bedömningar per område

8.1 Skelleftehamn

I Skelleftehamn (Figur 7) omfattar effektstudierna undersökningar av påverkan på fysiologin hos abborre (fiskhälsa).

Figur 7. Position för provtagning av abborre i Skelleftehamn.

8.1.1 Fiskhälsa hos abborre

Resultaten visar att det hos honabborrarna från Skelleftehamn ses tydliga signifikanta avvikelser i 4 variabler hos honabborre och 3 variabler hos hanabborre jämfört med referensen Holmöarna. För honabborrana gäller dessa avvikelser signifikant lägre konditionsfaktor (CF), högre plasmahalter av glukos, högre EROD aktivitet i levern och lägre aktivitet av GR i levern. Hos hanfisken gäller dessa avvikelser högre plasmahalter av glukos, högre EROD aktivitet i levern och en lägre plasmahalt av kalcium. Dessa avvikelser tyder på att det finns en påverkan på fiskens kondition dvs fisken är mager (Tabell 9). De högre glukoshalterna tyder på en påverkan på fiskens ämnesomsättning. De högre EROD aktiviteterna tyder på en exponering för organiska föroreningar, särskilt plana dioxinliknande ämnen och mest sannolikt PAH. Utöver dessa avvikelser hos fiskarna indikerar resultaten en påverkan på
fiskens tillväxt eftersom abborrarna som undersöktes från Skelleftehamn var något mindre och samtidigt äldre, vilket indikerar en långsammare genomsnittligt tillväxt, jämfört med fisken från Holmöarna. Avvikelsena som ses i kalciumnivåer i plasma hos hanfiskarna (men även en tendens hos honfiskarna) tyder på problem av regleringen av kalcium och därmed möjligen påverkan på fiskens skelettbildning (något som tidigare observerats hos fisk från området). För detaljerad beskrivning av resultaten hänvisas till delundersökningen ”Undersökning av hälsotillstånd hos abborre i Skelleftehamn och Sundsvallsfjärden, 2017” (Bilaga 1).

8.1.2 Sammanvägda bedömningar

Denna typ av biologiska effektundersökningar ger sällan svar på vilket eller vilka ämne(n) som orsakar de påvisade effekterna. Men det noteras något förhöjda nivåer av avgiftningsenzymet EROD vilket indikerar förekomst och exponering för PAH:er och eller andra plana organiska miljöföroreningar av typen dioxiner. Därutöver är Skelleftehamnsfjärden med stor historisk och pågående hamn- och industriell verksamhet däribland smältverket Rönnskär en stor källa till vattenmiljön för ett stort antal antropogena och miljöstörande ämnen som historiskt använts och i nutid används i samhället.
8.2 Sundsvallsfjärden

I Sundsvallsfjärden (Figur 8) har två delundersökningar genomförts, undersökningar av påverkan på fysiologin hos abborre (fiskhälsa) och undersökning av fortplantning och biomarkörer hos vitmärla.

Figur 8. Position för provtagning av abborre och vitmärla i Sundsvallsfjärden.

8.2.1 Fiskhälsa hos abborre

För att få en uppfattning om påverkan i lokalen i Sundsvallsfjärden har dessa fiskar jämförts med fiskar från ett referensområde, Holmöarna som är en referenslokal inom den nationella miljöövervakningen. Nedan följer sammanvägd bedömning av påverkan på fisken hälsotillstånd.

Resultaten visar att det hos honabborrarna från Sundsvallsfjärden ses tydliga avvikelse i 5 variabler hos honabborre och i 3 hos hanabborre jämfört med referensen Holmöarna. För honabborrarna gäller dessa avvikelse signifikant mindre relativ gonadvikt (GSI), lägre vitellogeninhalt, lägre konditionsfaktor (CF), betydligt högre aktivitet av avgiftningenzymet EROD, och något lägre GR aktivitet (Tabell 9). Hos hanabborrarna gäller dessa avvikelse mindre GSI, kraftigt förhöjd EROD aktivitet och höga plasma nivåer av kalium. Dessa resultat tyder på att det finns en tydlig påverkan på fisken utveckling av gonader dvs försenad eller hämmad gonadutveckling, och påverkan på fiskens kondition dvs mager fisk. De relativt kraftigt förhöjda nivåerna av EROD tyder på en större exponering för vissa typer av ämnen såsom PAH:er eller andra plana organiska ämnen såsom olika typer dioxidliknande ämnen. De förhöjda nivåerna av kalium i plasman som ses hos hanfisken, och där det även finns en tendens hos honfisken tyder på läckage från cellerna ut till plasman, beror på någon form av cellskador. För detaljerad beskrivning av tolkning och bedömning av resultaten hänvisas till...
delundersökningen “Undersökning av hälsotillstånd hos abborre i Skelleftehamn och Sundsvallsfjärden, 2017” (Bilaga 1).

![Tabellbild](image)

(Denna typ av biologiska effektundersökningar ger sällan svar på vilket eller vilka ämne(n) som orsakar de påvisade effekterna. Men det noteras att de anmärkningsvärt höga nivåerna av avgiftningsenzymet EROD indikerar förekomst och exponering för PAH:er och eller andra plana organiska miljöföroreningar av typen dioxiner. Därutöver är Sundsvallsfjärden med mottagandet av vatten från två större älvar, till Sundsvall med avloppsreningsverk och dagvattenutsläpp, E4:an med Sundsvallsbron samt stora industri och hamnverksamhet sammantaget en stor diffus källa till vattenmiljön för ett stort antal antropogena och miljöstörande ämnen som används i samhället.)
8.2.2 Fortplantning och biomarkörer hos vitmärla

8.2.2.1 Fortplantning

Vitmärlor från station 57 som ligger närmast land (Figur 8) hade mycket kraftiga skador, de totala skadorna (13,6 % missbildade embryo och 8,2 % embryo med avstannad utveckling) utgjorde mer än 20 % (Figur 9). Andelen honor med skadade embryo var 80 % vilket är högt över bakgrundsvärdet på 23 %. Även honor från station 58 som ligger lite längre ifrån land och industriella avloppsvatten har relativt höga frekvenser. Missbildade embryo på 6,8 % och en total skadefrekvens på >10 % medför att de inte uppnår GES. Signifikant högre skadefrekvenser registrerades i testområdet (se Tabell 3 i Bilaga 2).

![Figur 9. Fekunditet (ägg per hona, panel A) och missbildningsfrekvenser (% embryo, panel B) i Monoporeia affinis på förorenade stationer i Sundsvallsbukten (testområde) samt respektive referensstation (N26) i Norra Bottenhavet. Det fanns en signifikant skillnad i fekunditet mellan testområde och referensområde (Mann-Whitney U = 293,5, n₁ = 29, n₂ = 32, p <0,013) samt i missbildningsfrekvens (Tabell 3, i Bilaga 2).]

8.2.2.2 Biomarkörer

Vitmärlor från Sundsvallsbukten hade förhöjda värden av lipidoxidering (TBARS) samt högre antioxidantnivåer per cell (ORAC/DNA). Den resulterande negativa balansen (ORAC/TBARS) mellan antioxidativa och prooxidativa processer i vitmärlorna från Sundsvall indikerar emellertid att djuren lider av oxidativ stress (Figur 10). Enzymet acetylkinolineras (AChE) var förhöjd i djuren från Sundsvallsbukten i jämförelse med referensstationen (N26) som med stor sannolikhet också var relaterat till oxidativ stress samt neurologiska skador.

Proteinhalter som anges per individ (Protein) indikerar att antingen proteinkoncentration och/eller kroppsstorlek var signifikant lägre i vitmärlor från Sundsvallsbukten jämfört med referensstationen (Figur 10). Både lägre proteinkoncentration och mindre kroppsstorlek kan vara orsaken till lägre fekunditet vilket observerades i Sundsvallsbukten. Dessutom påvisar den lägre RNA-till-DNA-kvoten att djuren från Sundsvallsbukten var stressade och hade lägre tillväxtkapacitet jämfört med djuren från referensstationen. Relationen mellan proteininnehåll och fekunditet indikerar emellertid att proteinspecifik äggproduktion är högre i Sundsvallsbukten jämfört med referensstationen (Figur 11).

8.2.3 Sammanvägda bedömningar

Undersökningarna av vitmärlan visar också på en mycket tydlig påverkan i området med kraftigt förhöjd frekvens av missbildningar i båda undersökta lokalerna i Sundsvallsfjärden och en lägre fekunditet, dvs färre ägg per hona som innebär lägre populationstillväxt. Fler missbildningar anses orsakas av miljögifter, men det är svårt att veta vilka, medan den lägre fekunditeten kan vara kopplad till sämre födotillgång och kronisk exponering för miljögifter. Sambandet mellan proteininnehåll och fekunditet indikerar att proteinspecifik äggproduktion är högre i Sundsvallsfjärden jämfört med referensstationen. En sådan respons kan uppstå när stressade djur maximera investering i nästa generation under låga eller moderata nivåer av miljöbelastning. Biomarkörstudierna indikerar dessutom att vitmärlan i Sundsvallsfjärden lider av oxidativ stress och neurologiska skador.

Sammantaget kan det således konstateras att effektstudierna av både vitmärla och abborre i Sundsvallsbukten visar på mycket tydliga effekter som är orsakade av miljöföränderingar i området.
8.3 Norrsundet

Två delundersökningar genomfördes i Norrsundet (Figur 12), undersökningar av påverkan på fysiologin hos abborre (fiskhälsa) och undersökning av fortplantning och biomarkörer hos vitmärlan.

Figur 12. Positioner för provtagning av abborre och vitmärla i Norrsundet.

8.3.1 Fiskhälsa Abborre

För att få en uppfattning om påverkan i lokalen i Norrsundet har fiskarna från dessa jämförts med fiskar från ett närliggande referensområde, Axmarsfjärden. Nedan följer sammanvägd bedömning av påverkan på fiskens hälsotillstånd.

Resultaten visar att det hos honaabborrarna från Norrsundet ses tydliga signifikanta avvikelser i 3 variabler jämfört med referensen i Axmarfjärden. Dessa avvikelser gäller signifikant mindre gonader (GSI), lägre plasmahalter av glukos, och högre aktivitet av enzymet acetylkolinester (AChE) (Tabell 10). De lägre plasmanivåerna av glukos kan tyda på påverkan på fiskens ämnesomsättning och de avvikande AChE kan tyda på påverkan på nedbrytningen av transmittorsubstansen acetylkolin i nervmuskelsystemet. De mindre gonaderna (lägre GSI) tyder på en hämmad utveckling av gonaderna och därmed en påverkan på fiskens fortplantning. För observationen om mindre relativa gonader stämmer de resultaten helt överens med de som redovisas i rapporten “Uppföljande undersökning av tillväxt och fortplantning hos abborre i recipienten till Norrsundets Bruk 2017” (Sandström och Abrahamsson, 2017). Där rapporteras förutom mindre relativa gonader också att könsmognaden är förskjuten mot högre ålder och större storlek hos fiskarna från Norrsundet. För detaljerad beskrivning av tolkning och
bedömning av resultaten hänvisas till delundersökningen ”Undersökning av hälsotillstånd hos abborre i recipienten för Norrsundets bruk, 2017” (Bilaga 3).

Tabell 10. Abborrarnas gonader är mindre och blodets glukosnivåer är högre hos abborrarna från Norrsundet jämfört med referensområdet Axmarfjärden.

<table>
<thead>
<tr>
<th>Station</th>
<th>Vikt, g (A)</th>
<th>Längd, cm</th>
<th>CF (B)</th>
<th>Glukos, mmol/l</th>
<th>GSI, %</th>
<th>AChE (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrsundet</td>
<td>241 ± 12</td>
<td>27,1 ± 0,4</td>
<td>1,19 ± 0,02</td>
<td>5,8 ± 0,3 *</td>
<td>3,55 ± 0,13*</td>
<td>25,3 ± 1,2*</td>
</tr>
<tr>
<td>Axmarfjärden</td>
<td>221 ± 10</td>
<td>26,6 ± 0,3</td>
<td>1,16 ± 0,02</td>
<td>7,4 ± 0,7</td>
<td>4,55 ± 0,34</td>
<td>18,5 ± 1,6</td>
</tr>
<tr>
<td>Honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrsundet</td>
<td>191 ± 11</td>
<td>25,1 ± 0,6</td>
<td>1,19 ± 0,03</td>
<td>5,5 ± 0,3</td>
<td>7,14 ± 0,40</td>
<td>23,5 ± 1,7</td>
</tr>
<tr>
<td>Axmarfjärden</td>
<td>212 ± 9</td>
<td>26,0 ± 0,3</td>
<td>1,21 ± 0,02</td>
<td>9,4 ± 0,9</td>
<td>8,98 ± 0,57</td>
<td>20,8 ± 2,1</td>
</tr>
</tbody>
</table>

(A) Värdena i tabellen anges som medelvärde ± standardfel; (B) CF = konditionsfaktor, g/cm³; (C) nmol/mg protein x min; * p < 0,05 jämfört med Axmarfjärden.

Denna typ av biologiska effektundersökningar ger sällan svar på vilket eller vilka ämne(n) som orsakar de påvisade effekerna. Det är känt att en hämnad gonadutveckling är en vanlig respons hos fiskar som exponerats permanent för organiska miljögifter i laboratorieexperiment och hos fiskar i komplex förorenade recipienter såsom utanför skogsindustrier (Sandström et al., 2015). Därför är det troligt att de tidigare utsläppen från Norrsundets bruk kan ha bidragit till denna effekt, som således har sitt ursprung i historisk tillförsel. Det verkar därför möjligt att de ämnen som orsakar de observerade effekerna på den relativa gonadvikten finns ackumulerade i recipientens bottensediment och frigörs successivt vid erosion.

8.3.2 Fortplantning och biomarkörer hos vitmärla

8.3.2.1 Fortplantning

Andelen skadade embryo var förhöjt (5,2 % missbildade embryo och 5 % embryo med avstannad utveckling), och andelen honor med skadade embryo var 68 %, och stationen uppnår ej GES. Vitmärlorna har troligtvis gott om näring i Norrsundet då fekunditeten var hög (Figuur 13).

Figur 13. Fekunditet (ägg per hona, panel A) och missbildningsfrekvenser (% embryo, panel B) i *Monoporeia affinis* på förorenade stationer i Norrsundet (testområde) samt respektive referensstation (SR1A) i Bottenhavet. Det fanns en signifikant skillnad i missbildningsfrekvens mellan testområde och referensområde (Tabell 3, i Bilaga 2).
8.3.2.2 Biomarkörer

Resultaten överensstämmer med de i Sundsvallsfjärden och även i Norrsundet hade vitmärlorna förhöjda värden av TBARS samt högre cellspecifika antioxidantnivåer (ORAC/DNA) som tyder på att vitmärlorna lider av oxidativ stress (Figur 14, Figur 15). Enzyment AChE var förhöjd i djuren från Norrsundet precis som i Sundsvallsbukten vilket sannolikt är relaterat till oxidativ stress och neurologisk påverkan.

Figur 14. Biomarkörer som mätttes in Monoporeia affinis insamlade i Norrsundet och referensstation SR1A. Tillväxtbiomarkörer innefattar protein, RNA/DNA, RNA/protein, DNA/protein; oxidativ status härledd från TBARS, ORAC/protein, ORAC/DNA, ORAC/TBARS, och neurotoxicitet utvärderades med AChE aktivitet. Mann-Whitney-testet användes för att jämföra djur från olika populationer, och stjärnor indikerar signifikanta skillnader (p <0,05) mellan grupperna för de olika biomarkörerna.

Figur 15. Linjär regression mellan fekunditet och proteininnehåll för djur som insamlats i Norrsundet och referensstation SR1A. Det signifikant högre interceptet i regressionen för testområden indikerar högre specifik fekunditet per proteinhalt i dessa populationer.
8.3.3 Sammanvägda bedömningar

Undersökningen av abborrarnas fysiologi i Norrsundet visar en oacceptabel störning i en fysiologisk funktion, fortplantning, samt möjlig påverkan i ytterligare två funktioner, glukos i plasma och AChE aktivitet. Det betyder att bedömningen är att påverkan är av en sådan dignitet att fiskhälsan är nedsatt. Det går inte att avgöra vilka miljöföroreningar som orsakar dessa förändringar, men det bedöms som sannolikt att de orsakas av tidigare omfattande utsläpp från den idag nedlagda pappersmassaindustrin i området. Huruvida denna påverkan återspeglas i störningar på populationsnivå är oklart men det kan inte uteslutas.

Undersökningarna av vitmärlan visar påverkan i området med något förhöjd frekvens av missbildningar medan ingen påverkan ses på fekunditet. Precis som i Sundsvallsfjärden skiljer sig specifik fekunditet signifikant mellan test och referenspopulationer. Förhöjda missbildningar anses vara orsakade av miljöfarliga ämnen. I linje med detta, indikerar biomarkörerna både oxidativ stress och neurologiska skador.

Sammantaget kan det således konstateras att effektstudierna med både vitmärla och abborre i Norrsundet visar på kvarvarande effekter i området efter att Norrsundets bruk lades ner 2008.
8.4 Saltsjön

Effektstudierna i Saltsjön (Figur 16) omfattar undersökningar av påverkan på fysiologin hos abborre (fiskhälsa).

8.4.1 Fiskhälsa hos abborre

För att få en uppfattning om påverkan i lokalen i Saltsjön har fiskarna från dessa jämförts med fiskar från ett referensområde, Kvädöfjärden som är en referenslokal inom den nationella miljöövervakningen.

Resultaten visar att det hos honabborrarna från Saltsjön ses tydliga signifikanta avvikelser i 4 variabler jämfört med referensen Kvädöfjärden. För honabborrarna gäller dessa avvikelser signifikant mindre gonadosomatiskt index (GSI), lägre konditionsfaktor (CF), högre hematokrit och högre halt hemoglobin. Detta tyder på att det finns en påverkan på fiskens fortplantning, kondition och förmåga att ta upp syre. Hos abborrhonorna finns också en tendens till att andelen vita blodceller är högre än i referenslokalen. Detta kan tolkas som att immunförsvaret är aktiverat. Dessutom finns en tendens till något högre EROD aktiviteter hos honfisken. Dessa resultat tyder på en exponering för vissa organiska föroreningar. När det gäller hanfisken uppvisade resultaten i likhet med honfisken signifikant mindre gonadosomatiskt index (GSI), lägre konditionsfaktor (CF), och en tendens till högre hematokrit och högre halt hemoglobin. Utöver dessa avvikelser hos fiskarna indikerar resultaten en påverkan på fiskens tillväxt eftersom abborrarna som undersöktes från Saltsjön var betydligt mindre och samtidigt äldre, vilket indikerar en långsammare genomsnittligt tillväxt, jämfört med fisken från
Kvädöfjärden (Tabell 11). För detaljerad beskrivning av resultaten hänvisas till delundersökningen ”Undersökning av hälsotillstånd hos abborre i Saltsjön och Bråviken, 2017” (Bilaga 4).

8.4.2 Sammanvägda bedömningar
Bedömningen av miljöpåverkan i Saltsjön baseras på undersökningarna av fiskhälsa. I undersökningen av abborrarna i Saltsjön visar resultaten en oacceptabel störning i två fysiologiska funktioner, fortplantning och kondition, samt påverkan i ytterligare en funktion. Det betyder att bedömningen är att påverkan är av en sådan dignitet att fiskhälsan är nedsatt. Resultaten tyder dessutom på att abborrarnas tillväxt i Saltsjön är betydligt långsammare jämfört med fisken från referensen vilket förstärker bilden av en tydlig påverkan. Huruvida denna påverkan återspeglas i störningar på populationsnivå är oklart men det kan inte uteslutas. För detaljerad beskrivning av tolkning och bedömning av resultaten hänvisas till delundersökningen ”Undersökning av hälsotillstånd hos abborre i Saltsjön och Bråviken, 2017” (Bilaga 4).

Denna typ av biologiska effektundersökningar ger sällan svar på vilket eller vilka ämne(n) som orsakar de påvisade effekterna. Däremot indikerar de att Saltsjön, mitt i Stockholm, utgör en stor diffus källa till vattenmiljön för ett stort antal antropogena och miljöfarliga ämnen som historiskt använts och i nutid används i samhället.
8.5 Bråviken

I Bråviken (Figur 17) har undersökningar utförts på påverkan på fysiologin hos abborre (fiskhälsa), fortplantning och biomarkörer hos vitmärla och imposex hos stor tusensnäcka.

![Diagram av Bråviken](image)

Figur 17. Positioner för provtagning av abborre, stor tusensnäcka och vitmärla i Bråviken.

8.5.1 Fiskhälsa hos abborre

För att få en uppfattning om påverkan i lokalen i Bråviken har fiskarna från Bråviken jämförts med fiskar från ett referensområde, Kvädöfjärden som är en referenslokal inom den nationella miljöövervakningen.

Resultaten visar att det hos abborrarna från Bråviken ses tydliga signifikanta avvikelser i 6 variabler jämfört med referensen Kvädöfjärden. För honabborrana gäller dessa avvikelser signifikant mindre konsitionsfaktor (CF), högre halt hemoglobin, högre plasmahalt av kalium, större andel trombocyter och högre katalasaktivitet och AChE–aktivitet. Dessa resultat tyder på att det finns en påverkan på fiskens kondition (magrare fiskar), förmågan att ta upp syre, oxidativ stress, indikation på skador och läckage från celler. Dessutom ses en tendens till högre andel vita blodceller hos honfisken vilket indikerar en stimulering av immunförsvaret. Även hanabborrarna uppvisade signifikant mindre CF och högre AChE-aktivitet, och därtöver uppsåtade de mindre gonader vilket tyder på att hanfisken från Bråviken uppvisar påverkan på fortplantningen. Utöver dessa avvikelser hos fiskarna indikerar resultaten en påverkan på fiskens tillväxt eftersom abborrarna som undersöktes från Bråviken var mindre och samtidigt något äldre jämfört med fisken från Kvädöfjärden (Tabell 11). Resultaten tyder således på en längsammare genomsnittlig tillväxt hos abborrarna i de inre delarna av Bråviken. För detaljerad beskrivning av tolkning och bedömning av resultaten hänvisas till delundersökningen ”Undersökning av hälsotillstånd hos abborre i Saltsjön och Bråviken, 2017” (Bilaga 4).

<table>
<thead>
<tr>
<th>Station</th>
<th>Vikt, g (A)</th>
<th>Längd, cm</th>
<th>CF (B)</th>
<th>GSI, %</th>
<th>Ålder, år</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvädöfjärden</td>
<td>256 ± 10</td>
<td>27,0 ± 0,4</td>
<td>1,29 ± 0,01</td>
<td>4,91 ± 0,11</td>
<td>3,0 ± 0,1</td>
</tr>
<tr>
<td>Saltsjön</td>
<td>199 ± 14*</td>
<td>25,7 ± 0,5*</td>
<td>1,14 ± 0,02*</td>
<td>2,80 ± 0,10*</td>
<td>5,5 ± 0,3*</td>
</tr>
<tr>
<td>Bråviken</td>
<td>157 ± 7*</td>
<td>24,4 ± 0,4*</td>
<td>1,09 ± 0,01*</td>
<td>4,78 ± 0,20</td>
<td>4,1 ± 0,3*</td>
</tr>
<tr>
<td>Hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvädöfjärden</td>
<td>215 ± 18</td>
<td>25,2 ± 0,6</td>
<td>1,34 ± 0,06</td>
<td>9,93 ± 0,36</td>
<td>3,0 ± 0,0</td>
</tr>
<tr>
<td>Saltsjön</td>
<td>148 ± 21</td>
<td>23,1 ± 0,9</td>
<td>1,15 ± 0,03*</td>
<td>5,42 ± 0,78*</td>
<td>4,0 ± 0,6*</td>
</tr>
<tr>
<td>Bråviken</td>
<td>69 ± 16*</td>
<td>18,7 ± 1,4*</td>
<td>1,00 ± 0,02*</td>
<td>6,25 ± 0,54*</td>
<td>3,4 ± 0,2*</td>
</tr>
</tbody>
</table>

(A) Värdena i tabellen är angivna som medelvärde ± standardfel; (B) CF = konditionsfaktor, g/cm³; * p <0,05 jämfört med Kvädöfjärden.

Denna typ av biologiska effektundersökningar ger sällan svar på vilket eller vilka ämne(n) som orsakar de påvisade effekterna. Däremot indikerar de att de inre delarna av Bråviken med mynningen av Motala ström och närheten av Norrköping med avloppsreningsverk och dagvattenutsläpp samt stora industriar och hamverksamhet sammantaget utgör en stor diffus källa till vattenmiljön för ett stort antal antropogena och miljöstörande ämnen som används i samhället.

8.5.2 Fortplantning och biomarkörer hos vitmärla
8.5.2.1 Fortplantning
I Bråviken har vitmärlans embryo skador som signifikant skiljer sig från populationer vid tre referensstationerna (p <0,0001) i Asköområdet (Figur 17). Det är framför allt andelen missbildade embryo som är förhöjd men även embryo med avstannad utveckling innan gastrulation är signifikant högre i Bråviken. En frekvens på ca 12 % visar att de ej uppnår GES (se bedömningsgrunder). Även fekunditeten är signifikant lägre än på referensstationerna (Figur 18). I regressionen mellan fekunditet och proteinhalt var intercept signifikant högre för populationer från de förorenade stationerna i jämförelse med referensstationer (Figur 20). Proteinhalter som anges per individ indikerar att antingen proteinkoncentration och/eller kroppsstorlek var signifikant lägre i vitmärlor från Bråviken (Figur 19 och 20).
Figur 18. Fekunditet (ägg per hona, panel A) och missbildningsfrekvenser (% embryo, panel B) i *Monoporeia affinis* på förörenade stationer i Bråviken (testområde) samt respektive referensområde (Askö) i Norra Egentliga Östersjön. Det fanns en signifikant skillnad i fekunditet mellan testområde och referensområde (Mann-Whitney U = 3780, n₁ = 104, n₂ = 108, p < 0,001) samt i missbildningsfrekvens (Tabell 3, i Bilaga 2).

8.5.2.2 Biomarkörer

Vitmärlor från Bråviken hade förhöjda värden av lipidoxidering (TBARS) samt högre antioxidant nivåer (ORAC/protein och ORAC/DNA) jämfört med Asköpopulationen. Den resulterande negativa balansen (ORAC/TBARS) mellan antioxidativa och prooxidativa processer i Bråvikens prover indikerar emellertid att djuren lider av oxidativ stress (Figur 19). AChE-aktivitet var förhöjd i förhållande till referensvärden men inte signifikant.

Figur 19. Biomarkörer som mättes i *Monoporeia affinis* insamlade i Bråviken och referensområde Askö. Tillväxtbiomarkörer innefattar protein, RNA/DNA, RNA/protein, DNA/protein; oxidativ status härledd från TBARS, ORAC/protein, ORAC/DNA, ORAC/TBARS, och neurotoxicitet utvärderades med AChE aktivitet. Mann-Whitney-testet användes för att jämföra djur från olika populationer, och stjärnor indikerar signifikanta skillnader (p < 0,05) mellan grupperna för de olika biomarkörerna.
8.5.3 Imposex hos stor tusensnäcka

Stor tusensnäcka hämtades från grundområdet väster om Storudden belägen i vattenförekomsten Inre Bråviken. Det var relativt svårt att hitta rätt art varför analysen utfördes på endast 46 individer av vilka 21 var honor. Av dessa uppvisade 14% det första stadiet av imposex 1a. 1a innebär att en antydan till penis ses hos dessa honsnäckor. VDSI för lokalen beräknades till 0,14 vilket för stor tusensnäcka innebär mättlig status (Figur 21).

![Imposex hos stor tusensnäcka](image)

Figur 21. Resultat för analys av imposex hos stor tusensnäcka från Bråviken. Grafen visar samtliga analyserade individer (46 st.) och vilket stadium av imposex (0–6) som ses hos varje honsnäcka, där 0 är en normal hona. Individ som saknar data indikerar att individen är en hane. Svart heldragen linje avser VDSI för lokalen och röd streckad linje anger gränsen mellan mättlig och god status (0,1) enligt föreslagna gränsvärden inom HELCOM.
8.5.4 Sammanvägda bedömningar

Undersökningarna av vitmärlan visar också på tydlig påverkan i området med förhöjd frekvens av missbildningar och en lägre fekunditet dvs färre ägg per hona. Fler missbildningar orsakas huvudsakligen av miljögifter, men det är svårt att veta vilka, medan den lägre fekunditeten sannolikt är kopplad till exponeringen för olika kemikalier men även kan uppstå vid sämre födotillgång (Sundelin et al., 2008). Biomarkörsstudierna indikerar dessutom att vitmärlan i Bråviken lider av oxidativ stress. Proteinhalt som anges per individ indikerar att antingen proteinkoncentration och/eller kroppsstorlek var signifikant lägre i vitmärlor från Bråviken. Både lägre proteinkoncentration och mindre kroppstorlek kan vara orsaken till lägre fekunditet vilket observerades i Bråviken. Relationen mellan proteininnehåll och fekunditet indikerar emellertid att proteinspecifik äggproduktion är högre i Bråviken jämfört med Asköpopulationen. Den förhöjda investeringen i reproduktion kan förekomma i stressade populationer.

Undersökningarna av stor tusensnäcka indikerar tydligt att TBT nivåerna i de inre delarna av Bråviken, där snäckan fångades är så pass höga att de leder till en påverkan på snäckorna dvs honsnäckorna har utvecklat hanliga könsorgan därför att de exponeras för den sedan länge förbjudna båtbottenfärgen TBT som enligt andra studier finns i höga halter i sedimentet.

Sammantaget kan det således konstateras att samtliga metoder som använts för biologisk effektövervakning i Bråvikenområdet visar tydliga effekter som är orsakade av miljöföroringar i Bråvikenområdet.
8.6 Ronnebyåns mynning

Tre delundersökningar har genomförts i Ronnebyåns mynning (Figur 22), undersökningar av påverkan på fysiologin hos abborre (fiskhälsa), undersökning av lysosomal membranstabilitet hos blåmussla och imposex hos stor tusensnäcka.

![Figur 22](image.png)

Figur 22. Positioner för provtagning av abborre, stor tusensnäcka och blåmussla i Ronnebyåns mynning.

8.6.1 Fiskhälsa hos abborre

För att få en uppfattning om påverkan hos fiskar i lokalen i Ronnebyåns mynning har dessa jämförts med fiskar från ett referensområde, Torhamn som är en referenslokal inom den nationella miljöövervakningen. Nedan följer sammanvägd bedömning av påverkan på fiskens hälsotillstånd. Undersökningen av påverkan hos fisken i Ronneby ingår i en större undersökning där även påverkan på fiskar i tre andra förrenade områden, Karlskrona, Karlshamn och Sölvesborg undersöktes och är en del i rapporten om Hanöbuktens kustvattenmiljö 2017 (Tobiasson et al., 2018).

Resultaten visar att det hos honabborrarna, Ronnebyåns mynning, ses sex avvikelser jämfört med referensen Torhamn. För honabborrarna så förekom signifikant högre halt glukos, katalas-aktivitet och relativ levervikt (LSI), signifikant lägre andel vita blodkroppar (både andel granulocyter och totala antalet vita blodkroppar) och andelen omogna röda blodceller. Detta kan tolkas som att en påverkan finns i kolhydratmetabolismen (glukos) och energiupplagring (LSI), leverns avgiftningsskapacitet med indikation på oxidativ stress (katalas) och immunförsvaret (granulocyter och antalet totala vita blodceller) och påverkan på fisken syreupptagningsförmåga (iRBC). För detaljerad beskrivning av tolkning och bedömning av resultaten hänvisas till delundersökningen ”Undersökning av hälsotillstånd hos abborre i fyra områden längs Blekinge kuststräcka, 2017” (Bilaga 5).
Denna typ av biologiska effektundersökningar ger sällan svar på vilket eller vilka ämne(n) som orsakar de påvisade effekterna. Däremot indikerar de att avrinningen från Ronnebyån och närheten till Ronneby med avloppsgreningsverk och dagvattenutsläpp samt industri och hamnverksamhet sammantaget utgör en stor diffus källa till vattenmiljön för ett stort antal antropogena ämnen som används i samhället.

8.6.2 Lysosomal membranstabilitet hos blåmussla
Resultatet visar att blåmusslorna från Ronneby klassificeras som allvarligt stressade med en medelretentionstid på 40 minuter (Figur 23). Bedömningen av poängvärdet indikerar förekomst av PCB-liknande ämnen i Ronnebyåns mynning. Användningen av poängsättningen för att tolka vilka ämnen som kan orsaka stressen bör göras med försiktighet och bara användas som en indikation.

Figur 23. Resultat för analys av lysosomal membranstabilitet på musslor från Ronnebyåns mynning.

8.6.3 Imposex hos stor tusensnäcka
Stor tusensnäcka hämtades i grundområdet söder om Ronneby hamn vid sjösättningsrampen för småbåtar. Lokalen är belägen i de inre delarna av vattenförekomsten Ronnebfjärden. Det var inga svårigheter att hitta rätt art och analysen kunde utföras på 50 individer av vilka 39 var honor. Av dessa uppvisade 13 % första stadiet av imposex dvs 1a. VDSI för lokalen beräknades till 0,13 vilket för stor tusensnäcka innebär mättlig status (Figur 24). Försök gjordes även att hitta stor tusensnäcka längre in i Ronneby å men utan framgång.
8.6.4 Sammanvägda bedömningar

Resultatet från studierna av lysosomal membranstabilitet hos musslorna från Ronnebyån mynning visar att de klassificeras som allvarligt stressade.

Undersökningarna av stor tusensnäcka indikerar tydligt att TBT nivåerna i de inre delarna av Ronnebyåns mynning, där snäckan fångades, är så pass höga att de leder till en tydlig påverkan på snäckorna dvs honsnäckorna har utvecklat hanliga könsorgan därför att de exponeras för den sedan länge förbjudna båtbottenfärgen TBT som finns i höga halter i sedimentet.

Sammantaget kan det således konstateras att samtliga tre metoder som använts för biologisk effektövervakning i området kring Ronnebyåns mynning visar effekter som är orsakade av miljöföroreningar i området.
8.7 Landskrona

I Landskrona har tre delundersökningar genomförts (Figur 25), undersökningar av påverkan på fysiologin hos tånglake (fiskhälsa), undersökning av lysosomal membranstabilitet hos blåmussla och imposex hos stor tusensnäcka.

![Figur 25. Positioner för provtagning av tånglake, nätsnäcka och blåmussla i Landskrona.](image)

8.7.1 Fiskhälsa och yngelstatus hos tånglake

Resultaten visar att det hos hontånglakar från Landskrona ses tydliga signifikanta avvikelser i många variabler jämfört med referensen Kullen. För honfisken gäller dessa avvikelser signifikant lägre plasma nivåer av vitellogenin, större konditionsfaktor (CF) och högre halt av plasmaglukos, lägre aktivitet av enzymen glutation reduktas och glutationtransferas, högre halt av antalet vita blodceller (WBC), färre omogna röda blodceller (iRBC), högre halt av plasmakalcium och slutligen lägre aktivitet av enzymet acetylkolinesteras (AChE) (Tabell 12).

<table>
<thead>
<tr>
<th>Station</th>
<th>WBC, % (A)</th>
<th>AChE, (1)</th>
<th>Glukos, mmol/l</th>
<th>Vitellogenin, µg/ml</th>
<th>Kalcium, mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullen</td>
<td>2,59 ± 0,17</td>
<td>17,2 ± 1,6</td>
<td>2,3 ± 0,1</td>
<td>115 ± 14</td>
<td>1,37 ± 0,04</td>
</tr>
<tr>
<td>Landskrona</td>
<td>3,04 ± 0,13*</td>
<td>8,2 ± 0,4*</td>
<td>2,7 ± 0,1*</td>
<td>67 ± 9*</td>
<td>1,66 ± 0,06*</td>
</tr>
<tr>
<td>Hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullen</td>
<td>2,75 ± 0,18</td>
<td>22,1 ± 3,9</td>
<td>2,5 ± 0,2</td>
<td>0,09 ± 0,02</td>
<td>1,23 ± 0,10</td>
</tr>
<tr>
<td>Landskrona</td>
<td>2,66 ± 0,22</td>
<td>10,9 ± 0,8*</td>
<td>3,2 ± 0,2</td>
<td>0,18 ± 0,03*</td>
<td>1,57 ± 0,16</td>
</tr>
</tbody>
</table>

(A) Värdena i tabellen är angivna som medelvärde ± standardfel; (1) nmol/mg prot. x min; * p <0,05 jämfört med Kullen.

Resultaten tyder på att det finns en påverkan på många av fiskens fysiologiska funktioner såsom fisken fortplantning, ämensombalans, immunförsvar och förmåga att ta upp syre, samt en påverkan på den nervösa regleringen. När det gäller hanfisken uppvisade resultaten i likhet med honfisken signifikant högre konsida faktor, lägre aktiviteter av enzymet GST, och lägre aktivitet av acetylkolinesteras. Dessutom visade resultaten hos hanfisken förhöjda halter av vitellogenin och högre halt av hemoglobin.

Utöver dessa avviolerer indikerar resultaten en relativt stor andel missbildade yngel och förhöjd nivå av sent döda yngel hos tånglaken från Landskrona (Tabell 13). Enligt föreslagna gränsvärden ligger nivån för missbildade yngel så pass högt att forplantningen bedöms påverkad. Hos ynglen från Kullen indikerar resultaten en relativt stor andel tidigt döda yngel. Ökad andel döda yngel anses bero på att honan utsatts för syrebrist och min migifter. Resultaten tyder således på att det finns en påverkan av miljögifter på forplantningen hos fisken från Landskrona medan fisken från Kullen varit utsatt för syrebrist.

För detaljerad redovisning och beskrivning av resultaten hänvisas till delundersökningen ”Undersökning av hälsotillstånd hos tånglake från Landskrona och Byfjorden/Uddevalla 2017” (Bilaga 6).

Tabell 13. Reproduktionsframgång hos tånglakehonor från Landskrona jämfört med referensområdet Kullen.

<table>
<thead>
<tr>
<th></th>
<th>Tidigt döda yngel</th>
<th>Sent döda yngel</th>
<th>Missbildade yngel</th>
<th>Onormala yngel, totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kullen</td>
<td>5,53 %</td>
<td>1,56 %</td>
<td>0,00 %</td>
<td>7,09 %</td>
</tr>
<tr>
<td>Landskrona</td>
<td>1,59 %</td>
<td>2,59 %</td>
<td>2,27 %</td>
<td>6,45 %</td>
</tr>
<tr>
<td>Föreslagna gränsvärden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakgrundsivå</td>
<td>0-2,5 %</td>
<td>0-2 %</td>
<td>0-1 %</td>
<td>0-5 %</td>
</tr>
<tr>
<td>Förhöjd nivå</td>
<td>>2,5-5 %</td>
<td>>2-4 %</td>
<td>>1-2 %</td>
<td>>5-10 %</td>
</tr>
<tr>
<td>Påverkad nivå</td>
<td>>5 %</td>
<td>>4 %</td>
<td>>2 %</td>
<td>>10 %</td>
</tr>
</tbody>
</table>

Denna typ av biologiska effektundersökningar ger sällan svar på vilket eller vilka ämne(n) som orsakar de påvisade effekterna. Däremot indikerar de att undersökningsområdet i Landskronas hamnområde utgör en stor diffus källa till vattenmiljön för ett stort antal antropogenä ämnen som används eller har använts i samhället.

8.7.2 Lysosomal membranstabilitet hos blåmussla
Resultatet visar att blåmusslorna från Landskrona klassificeras som allvarligt stressade med en medianretentionstid på 21 minuter (Figur 26). Bedömningen av poängvärden indikerar förekomst av PCB-liknande ämnen i Landskrona. Användningen av poängsättningen för att tolka vilka ämnen som kan orsaka stressen så bör detta göras med försiktighet och bara användas som en indikation.

![Figur 26. Resultat för analys av lysosomal membranstabilitet på musslor från Landskrona.](image)

8.7.3 Imposex hos stor tusensnäcka
Stor tusensnäcka hämtades från grundområdet i de nordligaste delarna av naturreservatet Lundåkrabukten som är belägen i vattenförekomsten Lundåkrabukten. Rätt art hittades relativt enkelt och analysen utfördes på 50 individer av vilka 20 var honor. Av dessa uppvisade 40 % imposex, vid denna lokal hittades utöver det första stadiet av imposex dvs 1a även snäckor med stadie 2a och 4+. 2a innebär att snäckan har en penis med en så kallad penisduct och 4+ innebär att honan har en penis samt sädesledare som går förbi honans könsöppning. VDSI för lokalerna beräknades till 0,60 vilket för stor tusensnäcka innebär mättlig status (Figur 27).
8.7.4 Sammanvägda bedömningar

Resultatet från studierna av lysosomal membrandistabilitet hos mussslorna från Landskrona visar att de klassificeras som allvarligt stressade.

Undersökningarna av tusensnäcka i Landskrona området visar måttlig status med avseende på imposex. Ett resultat som inte är överraskande då proventaget område gränsar till en större småbåtshamn där det sannolikt förekommer förhöjda halter av TBT i sedimenten som påverkar omgivningen.

Sammantaget kan det således konstateras att samtliga metoder som använts för biologisk effektovervakning i Landskrona visar tydliga effekter som är orsakade av miljöföroreningar i Landskronaområdet.

Figur 27. Resultat för analys av imposex hos stor tusensnäcka från Landskrona. Grafen visar samtliga analyserade individer (50 st) och vilket stadium av imposex (0–6) som ses hos varje honsnäcka, där 0 är en normal hona. Individ som saknar data indikerar att individen är en hane. Svart heldragen linje avser VDSI för lokalen och röd streckad linje anger gränsen mellan måttlig och god status (0,1) enligt föreslagna gränsvärden inom HELCOM.
8.8 Uddevalla

Tre delundersökningar har genomförts i Byfjorden utanför Uddevalla (Figur 28), undersökningar av påverkan på fysiologin hos tånglake (fiskhälsa), undersökning av lysosomal membranstabilitet hos blåmussla och imposex hos stor nätsnäcka.

![Figur 28. Positioner för provtagning av tånglake, stor nätsnäcka och blåmussla i Uddevalla.](image)

8.8.1 Fiskhälsa och yngelstatus hos tånglake

För att få en uppfattning om påverkan hos fiskar i lokalen i Byfjorden har dessa jämförts med fiskar från ett referensområde, Fjällbacka, som är en referenslokal inom den nationella miljöövervakningen. Nedan följer en sammanfattande beskrivning av resultaten av påverkan på fisken hälsotillstånd.

<table>
<thead>
<tr>
<th>Station</th>
<th>LSI, % (A)</th>
<th>Ht (%)</th>
<th>EROD (1)</th>
<th>Vitellogenin µg/ml</th>
<th>Calcium, mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>1,51 ± 0,05</td>
<td>16,3 ± 0,9</td>
<td>0,076 ± 0,015</td>
<td>32 ± 6</td>
<td>1,74 ± 0,07</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>1,81 ± 0,09*</td>
<td>19,2 ± 1,0*</td>
<td>0,224 ± 0,033*</td>
<td>13 ± 2*</td>
<td>1,29 ± 0,03*</td>
</tr>
<tr>
<td>Hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>1,24 ± 0,11</td>
<td>21,6 ± 1,7</td>
<td>0,166 ± 0,026</td>
<td>0,09 ± 0,02</td>
<td>1,93 ± 0,16</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>1,18 ± 0,08</td>
<td>29,0 ± 1,2*</td>
<td>0,421 ± 0,049*</td>
<td>0,09 ± 0,02</td>
<td>1,33 ± 0,04*</td>
</tr>
</tbody>
</table>

(A) Värdena i tabellen anges som medelvärde ± standardfel; (1) nmol/mg prot. x min; *p <0,05 jämfört med Kullen.

Tabell 15. Reproduktionsframgång hos tånglakehonor från Byfjorden jämfört med referensområdet Fjällbacka.

<table>
<thead>
<tr>
<th></th>
<th>Tidigt döda yngel</th>
<th>Sent döda yngel</th>
<th>Missbildade yngel</th>
<th>Onormala yngel, totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjällbacka</td>
<td>0,05 %</td>
<td>1,00 %</td>
<td>0,11 %</td>
<td>1,15 %</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>0,75 %</td>
<td>1,38 %</td>
<td>0,32 %</td>
<td>2,45 %</td>
</tr>
<tr>
<td>Föreslagna gränsvärden för</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakgrundsnivå</td>
<td>0-2,5 %</td>
<td>0-2 %</td>
<td>0-1 %</td>
<td>0-5 %</td>
</tr>
<tr>
<td>Förhöjd nivå</td>
<td>>2,5-5 %</td>
<td>>2-4 %</td>
<td>>1-2 %</td>
<td>>5-10 %</td>
</tr>
<tr>
<td>Påverkad nivå</td>
<td>>5 %</td>
<td>>4 %</td>
<td>>2 %</td>
<td>>10 %</td>
</tr>
</tbody>
</table>

Den högre EROD aktivitet hos honfisken indikerar en exponering för vissa organiska föroreningar såsom PAHer och eller andra plana organiska miljöföroreningar av typen dioxiner. Hanfisken uppvisar i allt väsentligt samma avvikelse som honororna i de olika variablerna jämfört med Fjällbacka. För detaljerad beskrivning av resultatena hänvisas till delundersökningen ”Undersökning av hälsotillstånd hos tånglake från Landskrona och Byfjorden/Uddevalla 2017” (Bilaga 6).

Denna typ av biologiska effektundersökningar ger sällan svar på vilket eller vilka ämne(n) som orsakar de påvisade effekterna. Men det noteras att de höga nivåerna av avgiftningsenzymer EROD indikerar förekomst och exponering för PAH:er och eller andra plana organiska miljöföroreningar av typen dioxiner. Resultaten indikerar att undersökningsområdet tar emot utsläpp från Uddevalla med avloppssreningsverk och dagvattenutsläpp, E6:an med Uddevallabron samt stora industrier och hamnverksamhet sammantaget är en stor diffus källa till vattenmiljön för ett antal antropogena och miljöstörande ämnen som används eller har använts i samhället.
8.8.2 Lysosomal membranstabilitet hos blåmussla

Resultatet visar att blåmusslorna från Uddevalla klassificeras som stressade men kompenserande med en medelretentionstid på 65 minuter (Figur 29). Bedömningen av poängvärden indikerar förekomst av PCB-liknande ämnen i Uddevalla. Användningen av poängsättningen för att tolka vilka ämnen som kan orsaka stressen bör göras med försiktighet och bara användas som en indikation.

Figur 29. Resultat för analys av lysosomal membranstabilitet på musslor från Uddevalla.

8.8.3 Imposex hos stor nätsnäcka

Stor nätsnäcka hämtades från grundområdet Sundsbukten i den södra delen av Byfjordens vattenförekomsten. Nätsnäckorna fångades med hjälp av hårvar betade med fisk. Analysen utfördes på 50 individer av vilka 48 var honor. Av dessa uppvisade 25 första stadiet av imposex huvudsakligen 1b. 1b innebär att en antydan till bildning av en sädesledare ses hos dessa honsnäckor. VDSI för lokalen beräknades till 0,25 vilket för stor nätsnäcka innebär god status (Figur 30), det bör dock noteras att gränsen mellan god och måttlig status för stor nätsnäcka går vid 0,3.

Vid denna lokal utfördes även kemisk vävnadsanalys på snäckorna med avseende på tennorganiska föreningar. Resultatet från denna analys visade på att snäckorna innehåller halter av TBT och dess nedbrytningsprodukter DBT och MBT samt även trifenyltenn (TPT). Kvoten av TBT och dess nedbrytningsprodukter var under ett, vilket indikerar att nedbrytningen av TBT hos snäckan är större än tillförseln. Studier utförda 2018 av Bohuskustens vattenvårdsförbund visar på mycket höga halter av TBT (775 µg/kg TS) i sedimenten, liknande halter har mätts upp på denna sedimentlokal sedan år 2000 (Bohuskustens vattenvårdsförbund, mars 2019). Sedimentprovet är taget på ca 40 meters djup och då Byfjorden är en tröskelfjord med en stark skiktning av yt- respektive djupvatten (se områdesbeskrivningen) så påverkas sannolikt inte snäckorna nämnvärta av halter i sedimentet i de djupare delarna. Då syrebrist råder i de djupa delarna så sker heller ingen direkt nedbrytning av TBT.
vilket den höga kvoten på 2,7 mellan TBT och nedbrytningsprodukterna DBT och MBT indikerar. Sedimentlokalen ligger dessutom i de inre delarna av Byfjorden ca 2,5 km från området där snäckorna har fångats. Inga data finns över TBT-halter i de grundare sedimenten, men det finns en hel del båttrafik i området dels från större fartyg men även mindre fritidsbåtar och sannolikt återfinns halter av organiska tennföreningar i sedimenten i de grunda områdena, men troligen i lägre nivåer än i de djupa områdena.

8.8.4 Sammanvägda bedömningar

Resultatet från studierna av lysosomal membranstabilitet hos mussslorna från Byfjorden mynning visar att de är *stressade men kompenserande*.

Undersökningarna av stor nätsnäcka indikerar god status med avseende på imposex. Det bör dock noteras att resultatet för imposex är mycket nära gränsen för måttlig status.

Sammantaget kan det således konstateras att samtliga av de tre metoder som använts i denna biologiska effektövervakning i Byfjorden visar effekter som är orsakade av miljöföroreningar i området. Gällande imposex är dock VDSI så pass lågt att statusen ändå bedöms som god.

![Figur 30](image-url). Resultat för analys av imposex hos stor nätsnäcka från Byfjorden. Grafen visar samtliga analyserade individer (50 st.) och vilket stadium av imposex (0–4) som ses hos varje honsnäcka, där 0 är en normal hona. Individ som saknar data indikerar att individen är en hane. Svart heldragen linje avser VDSI för lokalen och röd streckad linje anger gränsen mellan måttlig och god status (0,3) enligt OSPAR (2009).
9. Slutsatser

Undersökningarna som gjorts inom ramen för Naturvårdsverkets mätkampanj Effekt screening visar att samtliga metoder inklusive undersökningar av hälsotillståndet hos fisk, fortpflan zning och biomarkörer hos vitmärla, lysosomal membranstabilitet hos blåmussla och imposex hos snäckor med få undantag visade på tydliga effekter i de åtta undersökte områdena (Tabell 16).

En jämförelse mellan de olika metoderna visar, med undantag för området i Byfjorden, en tydlig påverkan i resterande undersökta områdena. I Byfjorden noterades mindre stressade musslor och endast låga stadijer av imposex hos snäckor medan fiskhälsan kunde konstateras vara påverkad. Utöver Byfjorden gjordes undersökningar med mer än en av metoderna även i Sundsvallsfjärden, Norrsundet, Bråviken, Ronnebyåns mynning och Landskrona. I dessa områden visar jämförelsen mellan metoderna att samtliga indikerar en tydlig påverkan. Att samtliga metoder ger utslag beror på att alla valda undersökningsområden har en mycket komplekx och ganska påtaglig förreningsbelastning vilket innebär att det kan förväntas att de flesta organismer som lever i dessa områden kan uppvisa effekter som kan härledas till påverkan av miljöstörande ämnen.

I Sverige är den nationella effektbasierade miljöövervakningen i marin miljö väsentligen inriktad på att undersöka effekter av miljögifter i referensområden. Sådana områden karakteriseras av att de ska ligga på stort avstånd från större befolkningscentra och industri, eller till exempel inte ligga nära stora flodmynningar. Det har emellertid under en lång tid funnits behov av och intresse för den nationella miljöövervakningen att genomföra studier i förorenade områden och jämföra dessa med undersökningarna i referensområden för att därigenom bland annat öka kunskapen om miljöförorringas effekter i miljön. Naturvårdsverkets mätkampanj Effektscreening är ett led i att öka denna kunskap. Resultaten från denna studie kompletterar den ordinarie miljöövervakningen i referensområden och visar med stor tydlighet att de undersökte områdena är källor för miljöstörande ämnen till vattenmiljön. Undersökningarna visar också att det är önskvärt att kontinuerlig biologisk effektövervakning kommer igång i något eller några påverkade områden inom ramen för den nationella miljöövervakningen för att parallellt följa förändringar i miljön nära eller en bit från påtagliga, mer eller mindre kontinuerliga föroreningsskällor i vårt samhälle. Detta skulle också komplettera Sveriges internationella rapportering av miljödata genom att förutom att rapportera effektdata från referensområden även kunna rapportera data från påverkade/förorenade områden.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Funktion/Parameter</th>
<th>Skellefteåhamn</th>
<th>Sundsvallsfjärden</th>
<th>Norrsundet</th>
<th>Saltsjön</th>
<th>Bråviken</th>
<th>Ronneby</th>
<th>Landskrona</th>
<th>Byfjorden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiskhälsa</td>
<td>Fortplantning/ kondition</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
<tr>
<td></td>
<td>Energi</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
<tr>
<td></td>
<td>Leverfunktioner</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
<tr>
<td></td>
<td>Immuntillstånd</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
<tr>
<td></td>
<td>Hematologi</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
<tr>
<td></td>
<td>Jonreglering</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
<tr>
<td></td>
<td>Nervfunktion</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
<tr>
<td></td>
<td>Fortplantningkontroll</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
<tr>
<td>Vitmärla</td>
<td>Fortplantning</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
<tr>
<td></td>
<td>Biomarkörer</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
<tr>
<td>Blåmussla</td>
<td>RT</td>
<td>Röd</td>
<td>Röd</td>
<td>Röd</td>
<td>Röd</td>
<td>Röd</td>
<td>Röd</td>
<td>Röd</td>
<td>Röd</td>
</tr>
<tr>
<td>Nätsnäcka</td>
<td>VDSi</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
<tr>
<td>Stor tusensnäcka</td>
<td>VDSi</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
<td>Grön</td>
</tr>
</tbody>
</table>
10. Erkännande

Vi vill tacka Tove Lundeberg, Maria Linderoth, Karl Lilja, Elin Dahlgren och Elisabeth Nyberg från Naturvårdsverket för support under olika delar av Effektscreeningsprojektets genomförande. Vi vill även tacka Anneli Sedin (Länsstyrelsen i Västerbottens län), Karin Jönsson (Länsstyrelsen i Västernorrlands län), Henrik Sundberg (Länsstyrelsen i Gävleborgs län), Håkan Johansson (Länsstyrelsen i Stockholms län), Helen Ek (Länsstyrelsen i Östergötlands län), Ulf Lindahl (Länsstyrelsen i Blekinge län), Pardis Pirzardeh (Länsstyrelsen i Skåne) och Johanna Jellinek (Länsstyrelsen i Västra Götaland) för deras insatser för val av undersökningsområden.

Tack till Per Åke Hägerroth, Matias Ledesma, Calle Mattsson, Zandra Gerdes, Asa Motiei, Giulia Martella och Henrik Sundberg för insamling och provtagning av vitmärla.

Tack till Susanna Fredriksson, Jonas Nilsson och Lisa Bergström på Linneuniversitet för hjälp med insamling av blåmussla i Ronneby samt Jimmy Ahlsen för framtagande av kartor samt insamling av blåmusslor i Ronneby och Landskrona.
11. Litteraturreferenser

12. Bilagor

Bilaga 2: Sundelin B., Gorokhova E., Liewenborg B. 2019 Undersökning av hälsotillstånd hos vitmärla i Sundsvallsfjärden, i recipienten utanför Norrsundets bruk och Bråviken.

Undersökning av hälsotillståndet hos abborre i Skelleftehamn och Sundsvallsfjärden, 2017

Lars Förlin (1), Åke Larsson (1) och Jari Parkkonen (1)

(1) Institutionen för biologi och miljövetenskap, Göteborgs Universitet

September 2019
Innehållsförteckning

Inledning 3
Effektstudier hos fisk 3
Syfte 4
Material och Metoder 5
Resultat och Diskussion 6
 Inledning 6
 Fiske, provtagning och analysarbete 6
 Morfometriska mått (kroppsmarker och organindex) och ålder 7
 Konditionsfaktor, CF 7
 LSI 8
 GSI och vitellogenin 8
 Röda blodceller och hemoglobin i blodet 9
 Glukos i blodet 9
 Vita blodceller 10
 Jonbalansen 10
 EROD i levern 11
 Antioxidantzymer och oxidativ stress 12
 Acetylkolinesteras 12
Sammanfattande beskrivning av påverkan i lokalerna 13
Sammanvägda bedömningar och slutsatser 15
Litteraturreferenser 16
Inledning

I föreliggande undersökning har fiskfysiologisk metodik använts för att undersöka hälsoeffekter hos abborrar i Skelleftehamn och Sundsvallsfjärden. Undersökningarna är en del i ett stort screeningsprojekt som är initierat av Naturvårdsverket för att kartlägga miljögifters biologiska effekter vid ett antal svenska kustområden. Resultaten från dessa recipentlokaler har jämförts med resultat från referenslokalen Holmöarna, vilken ingår i nationella övervakningsprogrammet. Metodiken som använts för att studera effekter hos abborrarna är likadan som för de effektstudier som idag görs bland annat i den nationella kustfiskövervakningen.

Effektstudier hos fisk

I Sverige har det sedan många år använts fysiologiska, biokemiska och histologiska metoder (så kallade biomarkörer) för att studera hälsoeffekter hos fisk som exponeras för miljöfarliga ämnena. Detta har gjorts i såväl kontrollerade akvarieundersökningar i laboratoriet som i fältundersökningar på fiskar från mer eller mindre förorenade recipenter för avloppsvatten (Larsson et al., 1985; Förlin et al., 1986; Larsson et al., 2003; Noaksson et al., 2005, Sturve et al., 2005; Asker et al., 2015). På så sätt har hälsoundersökningar av fisk med hjälp av biomarkörer avslöjat effekter av miljögifter eller komplexa utsläpp i förorenade recipenter. Det har handlat om vattenområden i närheten av skogsindustrier, metallindustrier, petrokemiska industrier eller tätorter. Sedan slutet av 1980-talet används sådan metodik inom Naturvårdsverkets integrerade kustfiskövervakning för att undersöka hälsotillstånd hos fiskar i referenslokaler längs den svenska kusten (Sandström et al., 2005; Ronisz et al., 2005; Hansson et al., 2006; Hanson et al., 2009).

Biomarkörer som används innefattar mätningar som kan ge information om en organismers avgiftningssystem är aktiverat eller ger information om påverkan på viktiga fysiologiska funktioner såsom påverkat immunförsvar eller fortpantningsstörningar (Haux and Förlin, 1988; Stegeman et al., 1992; Larsson et al., 2000; Van der Oost et al., 2003). Biomarkörerna kan delas in i markörer för exponering som visar att kemiska ämnena tagits upp av organismen och olika försvarsmechanismer har aktiverats och i markörer för effekt som visar att olika fysiologiska funktioner är påverkade. Det betyder att biomarkörer på individnivå kan visa att fisken har exponerats för kemiska ämnena, visar tidiga tecken på effekter av dessa ämnena eller om fisken är uppenbart stressad av något i miljön. Biomarkörerna kan inte identifiera vilka miljögifter som ger signaler om påverkan, men kan ge viss information om vilka ämnesgrupper det kan röra sig om.

I Skelleftehamnsområdet gjordes undersökningar på fiskars fysiologi i slutet av 1970-talet och i början av 1980-talet i recipienten för Rönnskärsverken, och i sjöar som kontaminerats av luftburna metaller från denna industri samt i laboratorieexperiment där fisk exponerades för utsätt avloppsvatten från industrin. Dessa undersökningar visade bland annat att abborrar som exponerats för metallutsläppen hade påverkat immunförsvar med reducerat mängd vita blodceller och störningar i jonbalansen med lägre nivåer av natrium och klorid (Larsson et al., 1985). I området observerades dessutom hög frekvens av ryggradsskador hos hornsimpor i recipienten (Bengtsson et al., 1988). Flera av dessa undersökningar gjordes inom ramen för en stor satsning av Naturvårdsverket som hette Fisk/Metall. Uppföljande laboratorieförsök med avloppsvatten från Rönnskärsverken kunde bekräfta flera av de kraftiga effekter som hade
observerats i recipienten och i närliggande påverkade insjöar (Larsson et al., 1985). Efter att dessa undersökningar gjordes har kraftiga utsläppsreduktioner skett vid Rönnskärsverken. Men det finns inga uppföljande undersökningar om hur fiskars hälsa påverkats av dessa reduktioner.

Syfte

I föreliggande undersökning har fiskfysiologisk metodik använts för att undersöka om abborrar som lever i antropogent påverkade områden dels mitt i Skelleftehamn och dels i Sundsvallsfjärden med påverkan från både större tätorter större industrier uppvisar hälsoeffekter. Metodiken som används för att studera effekter hos abborrarna är av samma typ som för de effektstudier som idag görs bland annat i den nationella kustfiskövervakningen (Mustamäki et al. 2019a, b, c). Syftet med undersökningarna är att försöka bedöma vilka hälsoeffekter fiskar uppvisar som lever nära större tätorter på lokaler som kan beskrivas som recipientlokaler. För att få en uppfattning om påverkan i recipientlokalerna har fiskarna från dessa jämförts med fiskar från ett referensområde, Holmöarna som är en referenslokals inom den nationella miljöövervakningen (Mustamäki et al., 2019b). De undersökta lokalerna Skelleftehamn och Sundsvallsfjärden är angivna i Figur 1. Lokalernas placering har framtagits i samarbete med respektive Länsstyrelser och Naturvårdsverket.
Material och Metoder

Fångst och sumpning av fiskarna gjordes vid undersökningen i Skelleftehamn av fiskare Gunnar Hedlund i Kallholmsfjärden och i Sundsvallsfjärden av Kenneth Karlsson m.fl. Pelagia AB rundt Tjuvholmen och gjordes enligt de standardiserade föreskrifter som finns för denna typ av fiskundersökningar. Undersökning av fiskarnas hälsotillstånd gjordes således i två områden, dels i Skelleftehamn där sumpning och provtagning av fiskarna gjordes vid lotsstationen på Näsudden i Kallholmsfjärden, och dels i Sundsvallsfjärden där sumpning och provtagning gjordes bredvid ångbåtsbryggan vid Carlsvikspiren på Alnön. Fångst och sumpning av fiskarna från Holmöarna gjordes av Gunnar Asplund och fiskens sumpades vid Rovögerns hamn (Täfteå). I Tabell 1 anges positionerna för fisket vid de olika lokalerna.

Tabell 1. Positioner för undersökta stationer i de områden där provfiske utfördes hösten 2017.

<table>
<thead>
<tr>
<th>Station</th>
<th>koordinater</th>
<th>Provtagningsdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skelleftehamn</td>
<td>WGS84 decimal (lat, lon) 64.676, 21.272</td>
<td>20170907</td>
</tr>
<tr>
<td>Sundsvallsfjärden</td>
<td>WGS84 decimal (lat, lon) 62.385, 17.378</td>
<td>20170909</td>
</tr>
<tr>
<td>Holmöarna</td>
<td>WGS84 decimal (lat, lon) 63.681, 20.875</td>
<td>20170908</td>
</tr>
</tbody>
</table>

Provtagning, provberedning och analyser gjordes enligt beskrivningar i undersökningstyp ”Hälsotillstånd hos kustfisk – biologiska effekter på subcellulär och cellulär nivå (Larsson och Förlin, 2006). Vilka effekt- och exponeringsvariabler som ingår i undersökningen av fiskens hälsotillstånd framgår av Tabell 2. All data presenteras som medelvärdet ± standardfelet. Signifikant skillnad etablerades med hjälp av Kruskal-Wallis test (p<0,05) och Mann-Whitney test (p<0,05). I korthet gick provtagningen till så att fiskens längd och vikt mättes, dess kön registrerades och en mängd prover togs för mätning av olika biokemiska och
fysiologiska parametrar (biomarkörer). Avsikten var att ta prover från 20 könsmogna honor och 10 hanar.

Tabell 2. Effekt- och exponeringsvariabler/biomarkörer som ingår i undersökningen av fiskens hälsotillstånd (Larsson och Förlin, 2006).

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Mätvariabel/biomarkör</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energilagring, tillväxt, kondition</td>
<td>Total kroppsvikt, somatisk vikt, längd, ålder, somatisk konditionsfaktor (CF)</td>
</tr>
<tr>
<td>Fortplantning, hormonestörning</td>
<td>Gonadsomatiskt index (GSI), vitellogenin (vtg) i blodplasma</td>
</tr>
<tr>
<td>Leverfunktion, avgiftning, oxidativ stress</td>
<td>Leversomatiskt index (LSI), EROD-aktivitet, aktiviteterna av glutationreduktas (GR), glutation S-transferas (GST) och katalas</td>
</tr>
<tr>
<td>Nerv-och muskelfunktion</td>
<td>Acetylkinesteras aktivitet (AChE-aktivitet)</td>
</tr>
<tr>
<td>Kolhydratmetabolism/stress</td>
<td>Blodglukos</td>
</tr>
<tr>
<td>Syretransport, blodbildning</td>
<td>Hematokrit (Ht), omogna röda blodceller (iRBC), hemoglobin (Hb)</td>
</tr>
<tr>
<td>Immunförsvar, vävnadsskador</td>
<td>Vita blodceller: lymfocyter, granulocyter, trombocyter</td>
</tr>
<tr>
<td>Saltbalans, cellskador</td>
<td>Halter av klorid, natrium, kalium och kalcium i blodplasma</td>
</tr>
<tr>
<td>Exponeringsindikator</td>
<td>EROD-aktivitet, GR-aktivitet, GST-aktivitet, katalasaktivitet, acetylkinesteras (AChE)-aktivitet,</td>
</tr>
</tbody>
</table>

Resultat och Diskussion

Inledning

Vid resultatsammanställningen och tolkningen av data från undersökningen av abborrarnas hälsotillstånd har de undersökta fiskarna delats in i de två grupperna könsmogna honor och könsmogna hanar. Anledningen är att det är känt att vissa av variablerna som undersöks kan variera mellan kön och med könsmognad. Det är samma upplägg som inom nationella övervakningen där fokus ligger på resultat för könsmogna honor. Könsmogna hanar är huvudsakligen medtagna i undersökningen för mätning av halten vitellogenin i blod som markör för en påverkan av hormonestörande ämnen.

Fiske, provtagning och analysarbete

Avisikten var att ta prover från 20 könsmogna honor och 10 hanar av storleken 20-30 cm från varje lokal. Det lyckades få tag på fullt antal honor från två områden, Skelleftehamn och Holmöarna, medan från Sundsvall kunde prover tas från 14 könsmogna honor. Det lyckades att få tag på fullt antal hannar från två av lokalerna, Sundsvallfjärden och Holmöarna, och nästan fullt i den tredje lokalen, Skelleftehamn (Tabell 3).
Tabell 3. Antal könsmogna hon- och hanabborrar undersökning av fiskens hälsotillstånd i Skelleftehamn, Sundsvallsfjärden och Holmöarna.

<table>
<thead>
<tr>
<th>Station</th>
<th>Könsmogna abborrhonor</th>
<th>Könsmogna abborranhar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holmöarna</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Skelleftehamn</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Sundsvallsfjärden</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>

Morfometriska mått (kroppsvikt- och organindex) och ålder.

<table>
<thead>
<tr>
<th>Station</th>
<th>Vikt, gram</th>
<th>Längd, cm</th>
<th>CF (A)</th>
<th>LSI, %</th>
<th>GSI, %</th>
<th>Ålder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmöarna</td>
<td>219 ± 9</td>
<td>26.6 ± 0.4</td>
<td>1,16 ± 0,01</td>
<td>1,74 ± 0,06</td>
<td>4,19 ± 0,21</td>
<td>3,6 ± 0,1</td>
</tr>
<tr>
<td>Skelleftehamn</td>
<td>164 ± 6 *</td>
<td>24,7 ± 0,3</td>
<td>1,09 ± 0,01 *</td>
<td>1,75 ± 0,08</td>
<td>3,77 ± 0,18</td>
<td>5,0 ± 0,3 *</td>
</tr>
<tr>
<td>Sundsvallsfjärden</td>
<td>168 ± 19 *</td>
<td>24,3 ± 0,9</td>
<td>1,09 ± 0,02 *</td>
<td>1,86 ± 0,12</td>
<td>2,74 ± 0,31 *</td>
<td>3,8 ± 0,3</td>
</tr>
<tr>
<td>Könsmogna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmöarna</td>
<td>199 ± 11</td>
<td>25,8 ± 0,5</td>
<td>1,15 ± 0,03</td>
<td>1,45 ± 0,05</td>
<td>8,13 ± 0,80</td>
<td>4,2 ± 0,3</td>
</tr>
<tr>
<td>Skelleftehamn</td>
<td>161 ± 16</td>
<td>24,2 ± 0,7</td>
<td>1,11 ± 0,02</td>
<td>1,23 ± 0,07</td>
<td>6,24 ± 0,54</td>
<td>5,3 ± 0,3</td>
</tr>
<tr>
<td>Sundsvallsfjärden</td>
<td>104 ± 20 *</td>
<td>20,8 ± 1,1</td>
<td>1,06 ± 0,03</td>
<td>1,55 ± 0,08</td>
<td>5,60 ± 0,55 *</td>
<td>3,3 ± 0,3</td>
</tr>
</tbody>
</table>

*(A) konditionsfaktor, gram/cm³; * p < 0,05 jämfört med Holmöarna*

Konditionsfaktor, CF

I Tabell 4 redovisas konditionsfaktorn (CF). CF som är ett mått som beskriver relationen mellan kroppsvikt och långd visade tydliga statistiska skillnader mellan lokalerna. CF är därvidlag betydligt mindre i de båda recipientlokalerna hos honfiskarna jämfört med referenslokalen. Resultaten visar således att de könsmogna honabborrarna från Skelleftehamn och Sundsvallsfjärden är magrare än fisken från referensloken. Dessa skillnader kan vara resultatet av naturlig variation i tillgång på föda. Men det kan inte uteslutas att detta också är ett resultat av påverkan från antropogena utsläpp och den föroreningsbild som föreligger i de
påverkade områdena. En sämre tillgång på föda kan för övrigt också vara resultatet av en försämrad miljösituation.

LSI

I Tabell 4 redovisas LSI (lever somatiskt index) som är levervikten uttryckt i procent av somatisk kroppsvikt. Skillnaderna i leverens relativa storlek kan vara ett resultat av variation i upplagring av näringsämnen (fetter och kolhydrater) i levern, men kan också vara ett tecken på påverkan av miljöfarliga ämnien. Exponering för organiska miljögifter kan orsaka en förändrad storlek på lever som kan tyda på förändrad metabolisk aktivitet. Det är känt att leverens relativa storlek kan var större hos fisk som lever i recipienten för utsläpp från industrier såsom skogsindustrier (Sandström et al., 2015). I föreliggande undersökning visar resultaten att det inte finns några statistiskt belagda skillnader mellan lokalerna.

GSI och vitellogenin

I tabell 4 redovisas GSI (gonad somatiskt index) som är gonadvikten uttryckt i procent av somatisk kroppsvikt. Resultaten visar att GSI är lägre hos både hon- och hanaborrar från Sundsvallsfjärden jämfört med referensen Holmöarna. Även fisk från Skelleftehamn visar en tendens till mindre relative gonadviskter jämfört med referensen.

Det kan finnas flera förklaringar till att den relativa gonadvikten är lägre hos fisken särskilt från Sundsvallsfjärden men även från Skelleftehamn. En förklaring kan röra skillnader i gonad- och äggutveckling i de olika områdena som har naturliga orsaker såsom olika födoval eller olika temperatur. En annan möjlig förklaring till skillnader i gonadstorlek och utvecklingsgrad är att abborrarna har en senare utveckling, försenad och/eller hämmad gonadutveckling i de påverkade områdena. En försenad eller hämmad utveckling är i så fall en allvarlig effekt. Orsaken kan vara flera men naturliga miljöfaktorer såsom vattnets temperatur och tillgången på föda är möjliga förklaringar. Det kan samtidigt inte uteslutas att det i det här fallet rör sig om en påverkan av något eller några miljöfarliga ämnen. En hämmad gonadutveckling är en välkänd respons hos fiskar som exponerats permanent för organiska miljögifter i laboratorieexperiment och hos fiskar i komplext förorenade recipenter.

Även i tidigare undersökningar har det observerats att lägre relativ gonadvikt hos abborre från Sundsvallsområdet (Hansson et al., 2014; Förlin et al., 2018). I dessa båda undersökningar har det dessutom observerats stora andelar icke könsmogna honaborrar i området vilket stöder att utvecklingen av gonaderna kan vara hämmade eller försenade. Eftersom det normala utfallet inte ska vara en stor andel icke könsmogna abborrhonor motiverar detta att det görs riktade studier i Sundsvallsområdet av abborrarnas gonadutveckling och tillväxt (Förlin et al., 2018).

Även i tidigare undersökningar har det observerats att lägre relativ gonadvikt hos abborre från Sundsvallsområdet (Hansson et al., 2014; Förlin et al., 2018). I dessa båda undersökningar har det dessutom observerats stora andelar icke könsmogna honaborrar i området vilket stöder att utvecklingen av gonaderna kan vara hämmade eller försenade. Eftersom det normala utfallet inte ska vara en stor andel icke könsmogna abborrhonor motiverar detta att det görs riktade studier i Sundsvallsområdet av abborrarnas gonadutveckling och tillväxt (Förlin et al., 2018).

I Tabell 5 redovisas halten vitellogenin (guleprotein) i blodet hos honfiskens. När gonaderna tillväxer hos abborrarna under hösten bildas vitellogenin i levern under inverkan av honfiskens östrogen och transporteras via blodet till gonaden för att inkorporeras i ägget. Resultaten visar att de könsmogna honfiskarna är i full gång med att producera vitellogenin för att utveckla sina gonader för den kommande leksäsongen. Men resultaten visar också att de könsmogna honaborrarna från Sundsvallsfjärden hämmades eller försenades. Dessa resultat tyder på att utvecklingen av gonaderna hos honaborrarna sannolikt är hämmade hos honaborrarna från Sundsvallsfjärden.
Tabell 5. Hematokrit (Ht), hemoglobin (Hb), glukos och vitellogenin i blodet hos abborrar från Holmöarna, Skelleftehamn och Sundsvallsfjärden. Resultaten presenteras som medelvärde ± standardfel.

<table>
<thead>
<tr>
<th>Station</th>
<th>Hb, g/l</th>
<th>Ht, %</th>
<th>Glukos, mmol/l</th>
<th>Vitellogenin, µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvinnsköna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmöarna</td>
<td>61,8 ± 1,5</td>
<td>30,2 ± 1,9</td>
<td>5,2 ± 0,3</td>
<td>1341 ± 90</td>
</tr>
<tr>
<td>Skelleftehamn</td>
<td>66,4 ± 2,2</td>
<td>27,5 ± 1,0</td>
<td>9,3 ± 1,0 *</td>
<td>1619 ± 102</td>
</tr>
<tr>
<td>Sundsvallsfjärden</td>
<td>67,3 ± 1,9</td>
<td>31,6 ± 1,3</td>
<td>6,0 ± 0,6</td>
<td>634 ± 194 *</td>
</tr>
<tr>
<td>Kvinnsköna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmöarna</td>
<td>63,3 ± 3,2</td>
<td>30,8 ± 2,3</td>
<td>4,9 ± 0,2</td>
<td>0,42 ± 0,08</td>
</tr>
<tr>
<td>Skelleftehamn</td>
<td>71,4 ± 2,3</td>
<td>29,4 ± 0,9</td>
<td>11,8 ± 1,3 *</td>
<td>0,34 ± 0,06</td>
</tr>
<tr>
<td>Sundsvallsfjärden</td>
<td>63,5 ± 2,6</td>
<td>29,8 ± 1,2</td>
<td>6,8 ± 0,5</td>
<td>0,48 ± 0,13</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Holmöarna

I miljöövervakningssammanhang mätts halten vitellogenin i blodplasma även hos hanfisk för att ta reda på om de exponerats för ämnen med östrogenliknande effekter. I Tabell 5 kan ses att det inte föreligger några statistiskt belagda skillnader mellan lokalerna.

Röda blodceller och hemoglobin i blodet

Det undersöktes om fisken uppvisar blodbrist eller någon annan form av effekt på syreupptagningsförmågan genom att mäta blodets volym av röda blodceller (Hematokrit, Ht), och de röda blodcellernas innehåll av hemoglobin (Hb) och andel omogna röda blodceller (iRBC). Resultaten visar inga statistiskt belagda skillnader mellan områdena för någon av de tre variblerna Hb och Ht (Tabell 5) och iRBC (Tabell 6). Det betyder att fisken inte uppvisar någon blodbrist eller någon annan typ av påverkan på syreupptagningsförmågan.

Glukos i blodet

Halten glukos i blodet (Tabell 5) analyserades för att få en uppfattning om kolhydratmetabolismen kunde vara påverkad. Resultaten visar en tydlig högre nivå av blodsockret hos fisken från Skelleftehamn jämfört med referensområdet, vilket således indikerar en påverkan på ämnesomsättningen hos fisken från Sundsvallsfjärden. I tidigare undersökningar som gjordes redan i början av 1980-talet undersöktes bland annat glukoshalterna i plasma i abborre från Skelleftehamn. Det noterades då högre nivåer hos fisk som exponerades för metallindustrins avloppsvatten (Larsson et al., 1985; Larsson et al., 1986). Huruvida denna effekt är en kvarvarande effekt från tidigare utsläpp eller om den har någon annan orsak är inte känt. I referenslokalen Holmöarna (och i några andra referenslokal) är inte klart om det kan inte uteslutas att orsaken är exponering för miljöföroreningar. Även om halten glukos varierat en del under åren på
Vita blodceller

Vita blodcellsbilden undersöks för att ta reda på om immunförsvaret är påverkat. Mycket få avvikelser kunde noteras (Tabell 6). Därvidlag sågs inga avvikelser i andelen lymfocyter, granulocyter, trombocyter, totala vita blodcellsbilden (WBC) eller andelen omogna blodceller (iRBC) för de båda påverkade lokalerna jämfört med referensområdet. Det bör tilläggas att i undersökningarna som gjordes för snart 40-års sedan i utanför Rönnskärsviken, när utsläppen var betydligt större än idag, sågs tydligt lägre andel vita blodceller särskilt lymfocyter hos fisken i recipienten (Larsson et al., 1985; Larsson et al., 1986). Situationen i Skelleftehamn har sedan dess kraftigt förbättrats. Den samlade bedömningen är att resultaten från mätningarna av den vita blodcellsbildens indikerar att immunförsvaret inte är påverkat i de båda områdena när undersökningen gjordes.

Jonbalansen

Tabell 6. Andelen lymfocyter (%), granulocyter (%), trombocyter (%), total andelen vita blodceller (WBC, %) och andelen omogna röda blodceller (iRBC, %) i blodet hos abborre från Holmöarna, Skelleftehamn och Sundsvallsfjärden. Resultaten presenteras som medelvärde ± standardfel.

<table>
<thead>
<tr>
<th>Station</th>
<th>Lymfocyter %</th>
<th>Granulocyter %</th>
<th>Trombocyter %</th>
<th>WBC %</th>
<th>iRBC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmöarna</td>
<td>2,17 ± 0,15</td>
<td>1,00 ± 0,07</td>
<td>2,09 ± 0,13</td>
<td>5,24 ± 0,26</td>
<td>0,85 ± 0,08</td>
</tr>
<tr>
<td>Skelleftehamn</td>
<td>2,10 ± 0,16</td>
<td>1,23 ± 0,10</td>
<td>1,71 ± 0,13</td>
<td>5,04 ± 0,28</td>
<td>1,05 ± 0,09</td>
</tr>
<tr>
<td>Sundsvallsfjärden</td>
<td>2,44 ± 0,26</td>
<td>1,17 ± 0,11</td>
<td>2,34 ± 0,21</td>
<td>5,95 ± 0,42</td>
<td>0,72 ± 0,07</td>
</tr>
<tr>
<td>Könsmogna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmöarna</td>
<td>2,32 ± 0,26</td>
<td>0,98 ± 0,08</td>
<td>1,93 ± 0,16</td>
<td>5,23 ± 0,41</td>
<td>0,90 ± 0,16</td>
</tr>
<tr>
<td>Skelleftehamn</td>
<td>1,79 ± 0,18</td>
<td>1,09 ± 0,07</td>
<td>1,69 ± 0,22</td>
<td>4,58 ± 0,37</td>
<td>0,57 ± 0,07</td>
</tr>
<tr>
<td>Sundsvallsfjärden</td>
<td>2,35 ± 0,17</td>
<td>1,13 ± 0,10</td>
<td>1,84 ± 0,11</td>
<td>5,33 ± 0,21</td>
<td>0,59 ± 0,07</td>
</tr>
</tbody>
</table>

När det gäller kalcium ses statistiskt säkerställda lägre halter av kalcium i plasman från hanabborrorna från Skelleftehamn jämfört med Holmöarna. Denna skillnad är relativt liten men den stärks av att det även hos de könsmogna honabborrarna finns en antydan till lägre referensområdena står det klart att de halter som noterades 2017 i honabborrarna från Skelleftehamn ligger högt jämfört med vad som uppmätts på referenslokalen.

<table>
<thead>
<tr>
<th>Station</th>
<th>Klorid mmol/l</th>
<th>Natrium mmol/l</th>
<th>Kalium mmol/l</th>
<th>Kalcium mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td>98,3 ± 5,0</td>
<td>148,3 ± 5,9</td>
<td>3,17 ± 0,15</td>
<td>1,23 ± 0,05</td>
</tr>
<tr>
<td>Holmöarna</td>
<td>95,4 ± 3,2</td>
<td>140,9 ± 6,0</td>
<td>3,33 ± 0,17</td>
<td>1,21 ± 0,09</td>
</tr>
<tr>
<td>Skelleftehamn</td>
<td>105,4 ± 2,4</td>
<td>157,1 ± 5,8</td>
<td>4,10 ± 0,28</td>
<td>1,30 ± 0,07</td>
</tr>
<tr>
<td>Sundsvallsfjärden</td>
<td>104,7 ± 2,6</td>
<td>153,6 ± 4,0</td>
<td>4,45 ± 0,39</td>
<td>1,17 ± 0,09</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Holmöarna

EROD i levern

EROD-aktiviteten mäts för att ta reda på om fisken blivit exponerad för vissa typer av miljögifter (Tabell 8). Resultaten visar att det föreligger en statistisk belagd skillnad i EROD nivåer mellan abborrarna från de två recipientlokalerna jämfört med referenslokalen Holmöarna. Särskilt är nivån hos fisken från Sundsvallsfjärden anmärkningsvärt höga. Tidigare undersökningar i dessa eller närliggande områden visar på förhöjda EROD aktiviteter hos abborre (Hansson et al., 2014). Förhöjda EROD aktiviteter tyder att fiskarna har varit exponerade för ämnen som inducerar (ökar) EROD-aktiviteten, så kallade polycykliska aromatiska kolväten (PAH) som kan finnas i fossil olja.

Antioxidantenzymen och oxidativ stress

Antioxidantenzymen mäts för att ta reda på om fisken är utsatt för oxidativ stress. En ökad aktivitet av dessa enzym kan tyda på oxidativ stress. Resultaten visar att enzymen glutation S-transferas (GST) och katalas i levern inte uppvisar signifikanta skillnader hos abborrarna från Skelleftehamn och Sundsvallsfjärden jämfört med referenslokalen Holmöarna (Tabell 8). För aktiviteten glutationreduktas (GR) visar resultaten lägre aktiviteter hos honabborrarna i Skelleftehamn och Sundsvallsfjärden jämfört med referensen (Tabell 8). Resultaten visar att fiskarna i de båda recipientlokalerna lokalerna inte verkar ha varit utsatta för oxidativ stress.

Tabell 8. Aktiviteter av enzymerna EROD, glutationreduktas (GR), glutation S-transferas (GST), katalas och acetylkolinesteras (AChE) hos abborre från Holmöarna, Skelleftehamn och Sundsvallsfjärden.

<table>
<thead>
<tr>
<th>Station</th>
<th>EROD (1)</th>
<th>GR (1)</th>
<th>GST (2)</th>
<th>Katalas (2)</th>
<th>AChE (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holmöarna</td>
<td>0,159 ± 0,015</td>
<td>11,6 ± 0,3</td>
<td>0,135 ± 0,004</td>
<td>176 ± 14</td>
<td>22,2 ± 1,2</td>
</tr>
<tr>
<td>Skelleftehamn</td>
<td>0,221 ± 0,018 *</td>
<td>10,3 ± 0,3*</td>
<td>0,139 ± 0,004</td>
<td>146 ± 8</td>
<td>24,9 ± 1,2</td>
</tr>
<tr>
<td>Sundsvallsfjärden</td>
<td>0,471 ± 0,033 *</td>
<td>10,4 ± 0,2*</td>
<td>0,136 ± 0,005</td>
<td>184 ± 13</td>
<td>20,9 ± 1,7</td>
</tr>
</tbody>
</table>

(1)nmol/mg prot. x min; (2) µmol/mg prot. x min; * p < 0,05 jämfört med Holmöarna.

Acetylkolinesteras

Aktiviteten av enzymet acetylkolinesteras (AChE) reglerar nedbrytningen av transmittor-substansen acetylkinol i nerv-/muskelsystemet. Aktiviteten mäts i muskel för att ta reda på om fisken är exponerade för vissa miljöfarliga ämnen som är kända att hämma detta enzym. Mest kända exemplen på sådana ämnen är några insektsbekämpningsmedel som inte längre används i så stor utsträckning. Det finns även misstanke om att höga nivåer av andra ämnen kan ge en påverkan däribland en stor grupp ämnen som kallas organofosfatester som finns i vissa bekämpningsmedel, mjukgörare i plaster och syntetiska smörjoljor. Resultaten visar att inte på några statistisk belagda skillnader mellan de undersökte områdena (Tabell 8).
Resultaten indikerar således att det inte finns ämnen i Skelleftehamn eller Sundsvallsfjärden som hämmar enzymet AChE.

Sammanfattande beskrivning av påverkan i lokalerna

Ett stort antal parametrar ingår i den utförda fiskfysiologiska undersökningen. Syftet är att kunna göra en bedömning av fiskhälsan på de olika lokalerna utifrån en sammanvägning av resultaten från parametrarna. I fiskfysiologiska undersökningar anses en tydlig skillnad föreligga i en parameter om en statistiskt signifikant skillnad (p<0,05) finns mellan en recipientlokal och en referenslokal. I föreliggande undersökning upptäckte båda recipientlokalerna flera statistiskt signifikanta skillnaderna jämfört med referensområdet (Tabell 9).

Tabell 9. Parametrar i undersökningen 2017 där statistiskt signifikant skillnad (p<0,05) noterades på båda lokalerna Skelleftehamn och Sundsvallsfjärden jämfört med referensområdet Holmöarna. S= Signifikant skillnad mot Holmöarna med avseende på honabborrar. s= Signifikant skillnad mot Holmöarna med avseende på hanabborrar.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Skelleftehamn</th>
<th>Sundsvallsfjärden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproduktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonadosomatiskt index (GSI)</td>
<td>-</td>
<td>S s</td>
</tr>
<tr>
<td>Vitellogenin (hane)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vitellogenin (hona)</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Kondition och metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konditionsfaktor (CF)</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Leversomatiskt index (LSI)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glukos</td>
<td>S s</td>
<td>-</td>
</tr>
<tr>
<td>Avgiftningskapacitet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EROD</td>
<td>S s</td>
<td>S s</td>
</tr>
<tr>
<td>GR</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>GST</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Katalas</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Immunförsvar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lymphocyter</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Granulocyter</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trombocyter</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Röda blodceller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematokrit (Ht)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hemoglobin (Hb)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Omogna röda blodceller (iRBC)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jonreglering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natrium (Na)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kalium (K)</td>
<td>-</td>
<td>s</td>
</tr>
<tr>
<td>Klorid (Cl)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kalcium (Ca)</td>
<td>s</td>
<td>-</td>
</tr>
<tr>
<td>Nervfunktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylkolinesteras (AChE)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
kalium i plasman som ses hos hanfisk, men där det även finns en tendens hos honfisken tyder på läckage från cellerna ut till plasman, och beror på någon form av cellskador.

Sammanvägda bedömningar och slutsatser

Tabell 10. Sammanfattande beskrivning av om det finns en påverkan i de olika fysiologiska funktioner där ett antal parametrar analyserats i fisk från lokalerna i Skelleftehamn och Sundsvallsfjärden. S= Signifikant skillnad mot Holmöarna med avseende på honabborrar. s= Signifikant skillnad mot Holmöarna med avseende på hanabborrar.

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Parameter/biomarkör</th>
<th>Skelleftehamn</th>
<th>Sundsvallsfjärden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortplantning</td>
<td>GSI, vitellogenin</td>
<td></td>
<td>S s</td>
</tr>
<tr>
<td>Kondition o energi</td>
<td>LSI, CF, glukos</td>
<td>S s s</td>
<td>S s</td>
</tr>
<tr>
<td>Leverfunktioner</td>
<td>EROD, GR, GST, Katalas</td>
<td>S s S</td>
<td>S s S</td>
</tr>
<tr>
<td>Immunförsvar</td>
<td>Vita Blodceller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematologi</td>
<td>Ht, Hb, iRBC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jonreglering</td>
<td>Na, K, Cl, Ca</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>Nervfunktion</td>
<td>AChE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Ingen/obetydlig påverkan på funktion**
- **Påverkan på funktion (ytterligare undersökning bör göras)**
- **Oacceptabel störning i funktion**
I tidskriften Havet beskrivs också denna fiskmodell för bedömning av fiskfysiologiska undersökningar där även halter av miljögifter ingår (Reutgardh et al., 2010). Förutom att således även miljögifterhalter ingår i denna bedömningsmall införs en marginell förenkling för bedömningen av när fiskens hälsa är påverkad. Den bedöms påverkad om minst fem biomarkörer (parametrar), i minst två olika funktionella grupper, visar på signifikant skillnad. Även i denna modell, som således i allt väsentligt är lik modellen som beskrivs i stycket ovan, ger störd forplantning och reducerad kondition bedömningen påverkad fiskhälsa.

Tillämpas detta på resultaten från 2017 är undersökning kan man se att det finns en påverkan i minst tre funktioner (Tabell 10) hos fisken från båda lokalerna. Den samlade bedömningen blir även här att fiskens hälsa är påverkad.

Med hjälp av dessa snarlika modeller för att bedöma fiskhälsa visar resultaten att fisken i båda undersöktä lokalerna uppfyller en tydlig påverkan i flera fysiologiska funktioner då jämförelser görs mot referenslokal Holmöarna. Avvikelse deras bedöms som allvarliga och det kan inte uteslutas att de kan ge störningar på populationsnivå.

Det är viktigt att tillägga att det rapporteras om successiva förändringar över tid av hälsotillståndet hos abborre från referenslokalen Holmöarna som tyder på att den försämras. Dessa förändringar som baseras på tidstrender tycks vara ett generellt fenomen och har således observerats hos abborre från andra nationella kustreferensområden Kvädöfjärden och Torhamn. Huruvida denna successiva förändring hos abborre på individnivå har resulterat i påtagliga förändringar på populationsnivå i Holmöarna är oklart, men det har konstaterats att abborre och annan rovfisk minskat i förekomst och bedömningen av miljöstatus enligt Havsmiljödirektivet är att abborre och rovfisk inte når upp till god miljöstatus.

Litteraturreferenser

Undersökning av hälsotillstånd hos vitmärla i Sundsvallsfjär, Recipienten utanför Norrsundets bruk och i Bråviken.

Brita Sundelin, Elena Gorokhova, Birgitta Liewenborg.

Stockholms universitet, Institutionen för miljövetenskap och analytisk kemi, ACES

Oktober 2019
1. Bakgrund och syfte

I Naturvårdsverkets regi utförs med några års mellanrum riktade mätkampanjer inom miljöövervakning av miljögifter. 2017 års mätkampanj var inriktad på effekter av miljögifter i ett antal djurgrupper (fiskhälsa hos abborre och tånglake, embryonalutveckling hos vitmärla, lysosomal stabilitet hos mussla och imposex hos snäcka) på åtta särskilt påverkade provtagningsplatser längs Sveriges kust. Kampanjen möjliggjorde mätningar av en bred uppsättning av biologiska effekter av miljögifter samtidigt, i olika matriser och vid samma lokaler. Undersökningarna i de särskilt förorenade områdena kan fungera som komplement till de mätningar som görs i referensområden inom den återkommande övervakningen av effekter. Undersökningen ger underlag för uppföljning av miljömålen *Hav i balans och Giftfri miljö*.

Syftet med Effektscreeningen var i huvudsak:

- Att få en överblick över hur allvarliga effekter av miljögifter är på mer förorenade provtagningsplatser jämfört med referensområden.
- Att jämföra olika typer av metoder för att mäta effekter av miljögifter och även
- Att jämföra hur olika organismer svarar på en förändring i belastning av miljögifter.

I tillägg:

- Genererar undersökningen värdefull information om miljötillståndet, underlag för bedömningsgrunder och eventuellt också underlag för riskbedömningar enligt EU:s vatten- och havsmiljödirektiv samt
- Resultaten kan också användas i arbetet med tillsyn och prövning på länsstyrelserna och som ett svenskt bidrag till OSPAR:s integrerade effektsökning, och bidra till att testa utvalda variabler, t.ex. HELCOM:s supplementära indikator reproduktionsstörningar hos vitmärla och pre-core indikatorm lysosomal stabilitet.

Stockholms universitet, Institution för miljövetenskap och analytisk kemi (ACES) ansvarade för provtagning och analyser av vitmärlans forplantning och biomarkörer. För vitmärlans del var ett delmål:

- Att studera kopplingen mellan olika biomarkörer och reproduktionsskador hos vitmärlan samt möjligheten att öka känsligheten i bedömningen av ett förorenat område genom att inkludera analys av ett batteri av biomarkörer i reproduktionsstudierna.

1.1 Störjd forplantning hos vitmärlan tyder på exponering till miljögifter

Fortplantning hos vitmärlan *Monoporeia affinis* har studerats sen början av 80 talet i laboratorieexperiment med olika kemikalier samt i industrirecipienter. Det visade sig att embryonalutvecklingen stördes vid exponering för flertalet kemikalier och frekvensen missbildade embryon ökade (Reutgard *et al*. 2014). År 1992 skedde en internationell utvärdering
Bilaga 2

1.2 Biomarkörer

2. Undersökningsområden

Länsstyrelserna valde ut de förorenade områdena längs hela Sveriges kust och vitmärlan analyserades i de områden där den förekommer (Figu 1). Målsättningen var att studera vitmärlan i Skelleftebukten, Sundsvallsbukten, Norrsundet och Bråviken där gamla data visade att det fanns vitmärlepopulationer. Provtagningen av vitmärlan i Sundsvallsfjärden och Bråviken samordnades med det nationella övervakningsprogrammet under vecka 3 i januari 2018. Stationerna utanför Norrsundet provtogs emellertid i början av december 2017 då det fanns stor risk att isen skulle lagt sig till mitten av januari och det var för grunt i Norrsundet för KBV 181 som används vid provtagningen i Bottenhavet och som har isbrytarkapacitet. Djuren som provtogs i december 2017 inkuberades i sitt naturliga sediment ca 1 månad fram till analysen i januari 2018. I Skelleftebukten genomfördes provtagningen i januari 2018 men det hittades inga vitmärlor på
de lokaler som valts ut baserat på förekomst 2015; därför finns inga data att rapportera för detta område.

2.1 Sundsvallsfjärden

För Sundsvallsfjärden, Svartviksfjärden, Alnösundet och Draget pekade en påverkansanalys ut betydande påverkanskällor för följande ämnen/ämnesgrupper: PAH:er, klorerade alifater (trikloretylen), tungmetaller (Hg, Cd, Pb, As, Cr, Cu), klorerade bekämpningsmedel (till exempel DDT och HCB), dioxiner och dioxinlika föreningar, PFOS och PCB. För ytterligare information se [Figur 1. Karta över undersökningsområden för vitmärlan. Stjärnor indikerar provtagningsstationer; de svarta symbolerna indikerar stationer i de påverkade områden och de gröna symbolerna visar stationer i referensområden].
den samlade rapporten ”Effektscreening – Biologisk effektövervakning i förorenade områden längs Sveriges kust 2017”

2.2 Norrsundet

Vid Norrsundet påträffas fiberrika sediment nordost om industriområdet där processvattnet gick ut. De fyller svackor i området och har en utbredning med en sammanlagd yta på över en halv kvadratkilometer. Nivåerna av föroreningar i Norrsundets recipient är överlag mycket höga, och koncentrationerna är förhöjda av ett flertal organiska ämnegrupper, såsom klorerade dioxiner och furaner, HCB, PAH:er men även av vissa metaller inkl. kadmium och kvicksilver. Syftet med att undersöka Norrsundets recipient är således att försöka bedöma eventuellt kvarvarande effekter hos organismer i recipienten. Som referens till området valdes en kustnära station SR1 strax norr om Norrsundet (Figur 1).

2.3 Bråviken

Bråviken är en långsmal havsvik som sträcker sig från Norrköping i väst mot Oxelösund och Arkösund i öst. Bråviken saknar grunda mynningströsklar och vattenvolymen omsätts på omkring en månad. I det vidsträckta mynningsområdet sker intransport av saltare havsvatten längs det djupare kustområdet i norr, medan uttransporten av det lättare mindre salta vattnet mestadels sker längs det grundare, sydliga kustområdet.

3. Genomförande och metodik

3.1 Vitmärlans fortplantning

Provtagning och analyser gjordes enligt beskrivningar i Handboken för undersökningstypen ”Missbildade embryon av vitmärla” version 1:4 2016-05-24. Provtagning av embryon och sedimentkemi sker en gång per år i vecka 3-4. Det är viktigt att analysen sker i ett sent embryoutvecklingsstadium då det är lättare att identifiera missbildningar men att embryon ännu inte kläckts eftersom det då blir svårigheter att bestämma fekunditeten.

För insamlingen av vitmärlor användes en bottenskrapa som ger ett större antal individer än en Van Veen huggare. Det är optimalt att analysera 50 gravida honor. Sedimentet sållas genom 1 mm såll för att ta vara på de gravida honororna. Vid mycket låg temperatur är det en fördel att arbeta i uppvärmd lokal för att undvika bl.a. igenfrysning av såll. De levande, gravida honororna transporteras i väl syrsatt brackvatten till laboratoriet för analys. Eftersom vitmärlan är en kallvattenart är det viktigt att vattentemperaturen inte överstiger 7-8 °C.

Den biologiska analysen görs på levande djur under stereomikroskop (Leica M 10 med polariserat kalljus, och digitalkamera), där äggen friprepareras och analyseras med avseende på beskrivna variabler (Sundelin and Eriksson 1998, Sundelin et al. 2008); se Tabell 1 för sammanfattning. Vid analysen av embryon är det väsentligt att arbeta under kalljus eftersom en varm underbelysning kan medföra att membraner påverkas och embryon spricker. Den vuxna honan granskas med avseende på förekomst av missbildningar (Figur 2) och fekunditet (Tabell 1).

![Figur 2. Vitmärla Monoporeia affinis och embryon: (A) Gravid hona, (B) normala embryon, (C) missbildade embryon, (D) död äggsamling, (E) membranskadade embryon och (F) embryon med avstannad utveckling.](image-url)

<table>
<thead>
<tr>
<th>Mätvariabel</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortplantning</td>
<td></td>
</tr>
<tr>
<td>Fekunditet</td>
<td>Antal ägg per hona</td>
</tr>
<tr>
<td>Utvecklingsgrad hos embryo</td>
<td>Stadie 1 till 9 (från 2 celler till nykläckt juvenil)</td>
</tr>
<tr>
<td>Missbildade embryo</td>
<td>Olika typer som tex. membranskadade embryo</td>
</tr>
<tr>
<td>Döda respektive obefruktade/outvecklade embryo</td>
<td>Avstannad utveckling då tillväxten avstannat innan gastrulation (celler differentieras och ger upphov till olika vävnader och organ)</td>
</tr>
<tr>
<td>Döda eller partiellt döda äggsamlingar hos honan</td>
<td>Embryon som dör i ett tidigt skede av utvecklingen och kvarstår i marsupiet (äggkammaren) som en oidentifierbar lipidrest</td>
</tr>
<tr>
<td>Biomarkörer</td>
<td></td>
</tr>
<tr>
<td>Proteinhalten</td>
<td>Total mängd av protein per hona (utan embryo); ett mått på kroppsstorlek</td>
</tr>
<tr>
<td>RNA/DNA och RNA/Protein</td>
<td>RNA-till-DNA-kvot och RNA-till-Protein-kvot är ett mått på cellernas kapacitet att syntetisera proteiner</td>
</tr>
<tr>
<td>DNA/Protein kvot</td>
<td>DNA-till-Protein-kvot är ett mått på cellstorlek i hona</td>
</tr>
<tr>
<td>ORAC/Protein och ORAC/DNA</td>
<td>Oxygen Radical Absorbance Capacity (totalt oxidativt försvaret) är ett mått på antioxidant kapacitet normaliserat till protein eller antal celler</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric Acid Reactive Substances; mått på lipidoxidering och därmed ett mått på oxidativ stress</td>
</tr>
<tr>
<td>ORAC/TBARS</td>
<td>Balans mellan antioxidant kapacitet och oxidativa processer</td>
</tr>
<tr>
<td>AChE</td>
<td>Acetylkolinesterasaktivitet; både inhibering och stimulering indikerar störningar som påverkar receptorfunktionen, pre- eller postsynaptiska funktioner</td>
</tr>
</tbody>
</table>

3.2 Biomarkörer

Levande honor frysas i flytande kväve omedelbart efter att embryoanalysen genomförts. För olika parametrar och dess funktion se Tabell 1. Vid provtagningstillfället dissekerades...
embryosamlingen ut från de gravida honorna. Honorna frystes individuellt i cryorör i flytande kväve och förvarades sedan i -80 °C. Innan provupparbetning delades honorna i huvuddel respektive bakdel på torris och förvarades därefter i -80 °C i väntan på homogenisering.

Huvuddelen homogeniserades 3 × 20 sekunder, med kylning på is mellan körningar, med MP FastPrep-24 (Nordic Biolabs) i 210 µl kaliumfosfatbuffert (PPB) 75 mM, pH 7,4. Homogenatet centrifugerades 5 min 3300 × g i 4 °C och supernatanten fördelades därefter i alikvoter som placeras i -80 °C i väntan på analys. Bakdelen homogeniserades med Potter-Elvehjem homogenisator 5 slag 400 rpm i 150 µl RIPA (25 mM Tris-HCL pH 7,6, 150 Mm NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS; Pierce™ Thermo Scientific 89900); 0,5 mM EDTA. Homogenatet centrifugerades 10 min i 1600 × g i 4 °C. Supernatanten fördelades i alikvoter som placeras i -80 °C.

3.2.1. **Protein.** Proteinkoncentrationen mätttes med bicinehoninic acid metoden (Pierce™ BCA Protein Assay kit, Thermo Scientific 23225) med modifikationer för microplatt metoden. Transparanta plattor användes där 25 µl utspädd supernatant blandades med 200 ml reagens per brunn. Absorbansen mättes vid 540 nm med plattläsare FluoStar Optima (BMG Lab Technologies, Tyskland). Protein analyserades i homogenaten från båda kroppsdelarna för att kunna beräkna den totala proteinmängden µg/individ.

3.2.2. **Antioxidant kapacitet (ORAC).** ORAC mättes enligt Ou et al. 2001 efter vissa modifikationer. Vid analys användes 20 µl supernatant med en proteinkoncentration 0,12 mg/ml. Proverna blandades med 30 µl 2,2-azobis(2-aminopropane)dihydrochloride (AAPH; 152,66 mM) som en källa till peroxyradikaler och 150 µl fluorescein (106 nM). Som standard användes Trolox (6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; 218µM). Fluorescensen avlästes vid 495nm/520nm (Ex/Em) vid 37 °C under 2 timmar med plattläsare FluoStar Optima. ORAC anges som mg trolox eq./mg protein.

3.2.3. **Acetylcholine esterase aktivitet (AChE).** AChE aktiviteten analyserades enligt Ellman et al. (1961) med modifikationer för microplatt metoden. Proteinkoncentrationen i proverna justerades till 0,5 mg/ml och därefter blandades 25 µl prov med 250 µl reagenslösning bestående av 169 µl (75 mM) acetylthiocholinlösning (AAPH), 845 µl (10 mM) 5,5-Dithiobis(2-nitrobenzoic acid) (DTNB) lösning och 25,4 ml 100 mM PPB med pH 7,2. Absorbansen avlästes med 2 minuters intervall i 10 cyklar vid 405 nm med plattläsare FluoStar Optima. Cholinesterasaktiviteten anges som nmol/mg protein/min.

3.2.4. **RNA/DNA.** Kvoten RNA/DNA analyseras enligt Gorokhova et al. (2002) med vissa modifikationer. 10µl supernatant blandas med 190 µl extraktions buffert (1% sarcosyl i TE-buffert). Efter sonikering 3 × 30 s skakades proverna i 2,5 timmar och därefter överförs 15 µl prov/brun till microplatta. 70 µl TE-buffert och 70 µl RiboGreen (50 µl/10 ml) tillsätts och efter avläsning av fluorescens som återspeglar den totala mängden RNA och DNA vid 485nm/520nm (Ex/Em) med plattläsare FluoStar Optima tillsätts 5 µl RNase (1:99 Promega stock i TE-buffert) för att efter 30 minutes
inkubering avlåsa fluorescens som återspeglar DNA. Som standard används RNA (16S and 23S rRNA, Escherichia coli, Component C RiboGreen Kit) respektive DNA (kalv thymus).

3.2.5. **Lipid peroxidering (TBARS).** TBARS analyserades enligt TCA metoden (Cayman Chemicals 700870) där protein i 100 µl supernatant fälls ut med hjälp av 10% triklorättiksyra (TCA). Därefter tillsätts 800 µl reagenslösning bestående av 10% ättiksyra, 0,35M natriumhydroxid och 37 mM Thioarbituric acid (TBA). Som standard används Malondialdehyd (MDA). Efter värmebehandling under 60 min centrifugeras proverna och därefter överförs 200 µl/brun till microplatta. Avläsning sker vid 544nm/590nm (Ex/Em) med plattläsare FluoStar Optima och koncentrationen anges som µM MDA eq./mg protein.

4. **Bedömningsgrunder**

Inom HELCOMs indikatorarbete har vi tidigare tagit fram bedömningsgrunder (Reutgard och Sundelin 2014; HELCOM 2018) för indikatorn ”*Missbildade embryon hos vitmärlan*” men för biomarkörer har detta arbete bara påbörjats. Vid framtagandet av bedömningsgrunder för missbildade embryon av vitmärla har vi utgått från data från den nationella provtagningsen som har pågått sedan 1994 fram till 2011 då programmet reviderades och utökades med fler stationer längs kusten. Prover har samlats in årligen i slutet av januari på 5 stationer i Bottenhavet och 9 stationer i Asköområdet. Urvalet innehåller 8622 honor med drygt 230 000 embryon. Eftersom gränsvärde baseras på en percentil har provstorleken en avgörande betydelse för var gränsvärdet hamnar. En högre provstorlek ger mindre varians till följd av slumpvisa fel och därför också en mindre spridning (lägre percentil). Eftersom provstorleken varierade stort från år till år och från station till station, har vi valt att använda oss av upprepad slumpmässig provtagnings s.k. Bootstrapping, där vi själva kan kontrollera provstorleken. Vi har valt att använda en provstorlek på 50 honor (ca 1500 embryon) vilket är den rekommenderade provstorleken i det Nationella provtagningsprogrammet. Den slumpmässiga provtagningsen av 50 honor i dataurvalet upprepades 100 000 gånger för att få en jämn spridning. Resultatet visar att andelen missbildade, membranskadade och outvecklade embryon är i genomsnitt 4,1 % (bakgrundsvärde). Vi har valt att använda den 90:e percentilen i likhet med de flesta andra bedömningsgrunder för biologiska

<table>
<thead>
<tr>
<th>Bedömningsgrunder</th>
<th>Medelvärde</th>
<th>Bakgrundsnivå</th>
<th>Förhöjt värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andelen missbildade embryon</td>
<td>4,1 %</td>
<td>0 – 5,9 %</td>
<td>> 5,9 %</td>
</tr>
<tr>
<td>Andelen honor med >1 missbildat embryo</td>
<td>23 %</td>
<td>0 - 30 %</td>
<td>> 30 %</td>
</tr>
</tbody>
</table>

effekter (Vethaak et al. 2017, Davies och Veethak 2012). Den 90:e percentilen hamnar vid 5.9 % (Tabell 2) av totalt skadade embryo (dvs. missbildade, membranskadade och outvecklade embryo). Förutom att bedöma andelen missbildade embryo analyseras även andel honor med missbildade embryo. En sammanställning av data från påverkade områden och utvalda övervakningsdata från det Nationella programmet visade att man har störst chans att upptäcka statistiskt säkerställda skillnader mellan påverkat och opåverkat område genom att jämföra andel honor med fler än ett missbildat embryo. Slumpvis upprepad provtagnings (100 000 gånger) av 50 honor visar att andelen honor med fler än ett missbildat embryo är i genomsnitt 23 % och 90 percentilen är 30 %.

5. Resultat och sammanvägda bedömningar

5.1 Fortplantning

5.1.1. Sundsvallsbukten. Vitmärkans reproduktion analyserades på två stationer. Station 57 som ligger närmast land och station 58 som ligger lite längre från land (Figur 1). Station 57 hade mycket kraftiga skador, de totala skadorna dominerades av missbildade embryo (13,6 %) och embryo med avstannad utveckling (8,2 %) som tillsammans utgjorde mer än 20 %. Andelen honor med skadade embryo var 87 % vilket är mycket över bakgrundsvärdet på 23 %. Även station 58 som ligger lite längre ifrån land och industriella avloppsvatten har relativt höga frekvenser. Missbildade embryo på 6,8 % och en total skadefrekvens på >10 % samt 52 % honor med skadade embryo medför att de inte uppnår GES. Den totala missbildningsfrekvensen skiljer sig signifikant från referenslokalen (Tabell 3). Vi har vid studier på 90-talet observerat låg fekunditet och förhöjd andel missbildade embryo på stationer som ligger relativt nära st 57 och 58 (Ericson et al. 1996).

Tabell 3. Chi-square test med Yates korrigering som visar att frekvens av missbildningar är högre i testområden än i referenspopulationer. Signifikanta p-värden anges i fetstil.

<table>
<thead>
<tr>
<th>Område, stationer</th>
<th>Statistik</th>
<th>Alla typer av missbildningar</th>
<th>Missbildade embryo</th>
<th>Membranskador</th>
<th>Avstannad utveckling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottenhavet vs. N26</td>
<td>χ^2</td>
<td>21.01</td>
<td>$<0,0001$</td>
<td>48.74</td>
<td>$<0,0001$</td>
</tr>
<tr>
<td>Bottenhavet vs. SR1A</td>
<td>χ^2</td>
<td>16.73</td>
<td>$<0,0001$</td>
<td>24.28</td>
<td>$<0,0001$</td>
</tr>
<tr>
<td>Egentliga Östersjön vs. Askö</td>
<td>χ^2</td>
<td>37,15</td>
<td>$<0,0001$</td>
<td>23.48</td>
<td>$<0,0001$</td>
</tr>
<tr>
<td>Bräviken vs. N26</td>
<td>χ^2</td>
<td>0.19</td>
<td>0.6614</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Norrsundet. Andelen honor med skadade embryon var ~50 % och stationen uppnår ej GES men andelen missbildade embryon är lägre än på stationerna i Sundsvallsbukten. Fekunditeten var relativt hög vilket tyder på att det fanns gott om näringsämnen i form av organiskt material i sedimentet från avloppsvatten från den nedlagda massafabriken (Tabell 3, Figur 3).

Bråviken. Vitmärlans embryon har skador med signifikant högre frekvens än på referensstationerna i Asköområdet (Tabell 3, Figur 3). Det är framför allt andelen missbildade embryon som är starkast förhöjd men även embryon med avstannad utveckling innan gastrulation är signifikant högre i Bråviken (Tabell 3). En total skadefrekvens på ca 12 % samt 40 % honor med skadade embryon visar att testområdet ej uppnår GES. Fekunditeten är även mycket låg jämfört med referensstationerna och den lägsta av alla testområden (Figur 3).
5.2 Biomarkörer

5.2.2. Norrsundet. Resultaten överensstämmer med de i Sundsvallsbukten och även i Norrsundet hade vitmärlorna förhöjda värden av lipidoxidering (TBARS) samt högre antioxidanttivåer (ORAC/DNA) och det finns indikationer på att vitmärlorna lider av oxidativ stress (Figur 4). Enzymet acetylcholinesterase (AChE) var förhöjd i djuren från Norrsundet precis som i Sundsvallsbukten vilket sannolikt är relaterat till oxidativ stress.

5.2.3. Bråviken. Vitmärlorna hade förhöjda värden av lipidoxidering (TBARS) samt högre antioxidant nivåer (ORAC/protein och ORAC/DNA). Den resulterande negativa balansen (ORAC/TBARS) mellan antioxidativa och prooxidativa processer i Bråvikens prover indikerar emellertid att djuren lider av oxidativ stress (Figur 4). Proteinhalter indikerar att antingen proteinkoncentration och/eller kroppsstorlek var signifikant lägre i vitmärlor från Bråviken (Figur 5). Både lägre proteinkoncentration och mindre kroppsstorlek kan vara orsaken till lägre fekunditet vilket observerades i Bråviken (Figur 3). Relationen mellan proteininnehåll och fekundidet indikerar emellertid att proteinspecifik äggproduktion är högre i Bråviken jämfört med Asköpopulationen (Figur 5).
Figur 4. Biomarkörer som mättes i *Monoporeia affinis* insamlade i (A) Sundsvallsbukten och station N26, (B) Norrsundet och SR1A, och (C) Bråviken och utanför Askö. Tillväxtbiomarkörer innefattar protein, RNA/DNA, RNA/protein, DNA/protein; oxidativ status härledd från TBARS, ORAC/protein, ORAC/DNA, ORAC/TBARS, och neurotoxicitet utvärderades med AChE aktivitet. Mann-Whitney-testet användes för att jämföra data från olika populationer, och stjärnor indikerar signifikanta skillnader mellan grupperna för de olika biomarkörerna.
Figur 5. Linjär regression mellan fekunditet och proteininnehåll för *Monoporeia affinis* som samplats i
(A) Sundsvallsbukten och station N26,
(B) Norrsundet och SR1A, och
(C) Bråviken och utanför Askö.

Det signifikant högre interceptet i regressionen för testområden indikerar högre specifik fekunditet per proteinhalt i dessa populationer. En sådan respons kan uppstå när stressade djur maximerar investering i nästa generation under låga eller moderata nivåer av miljöbelastning.
6. Biomarkörer för bedömning av hälsotillståndet hos *Monoporeia affinis*

I de under lång tid förorenade testområdena registrerades effekter både på vitmärlans reproduktion och de biomarkörer som analyserades hos honorna. På individnivå, observerades lägre fekunditet, högre nivåer av missbildade embryo (Figur 3) och signifikanta skillnader i hur energi fördelas till reproduktionen (Figur 5). Vidare indikerade resultatet lägre tillväxtkapacitet, dålig oxidativ status och neurologiska skador på de djur som insamlats på de kontaminerade lokalerna jämfört med referenslokaler inom samma bassäng (Figur 4). Således samstämmer resultaten på individnivå med de på lägre organisationsnivå när kontaminerade lokaler jämförs med referenslokaler.

Tabell 4. Spearmans rangkorrelation för reproduktionsvariabler (lekenditet och olika missbildningstyper) och biomarkörer. De röda värdena indikerar signifikanter korrelationer (p < 0.05)

<table>
<thead>
<tr>
<th></th>
<th>protein</th>
<th>RNA/DNA</th>
<th>RNA/ protein</th>
<th>DNA/protein</th>
<th>TBARS</th>
<th>ORAC/protein</th>
<th>ORAC/TBARS</th>
<th>ORAC/DNA</th>
<th>AChE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fekunditet</td>
<td>0.71595</td>
<td>0.417354</td>
<td>-0.04156</td>
<td>-0.420525</td>
<td>-0.103534</td>
<td>-0.230502</td>
<td>0.021081</td>
<td>-0.124906</td>
<td>-0.349096</td>
</tr>
<tr>
<td>MALF%</td>
<td>-0.147640</td>
<td>-0.045205</td>
<td>0.024577</td>
<td>0.078236</td>
<td>0.044111</td>
<td>0.029452</td>
<td>-0.047782</td>
<td>0.031944</td>
<td>0.039051</td>
</tr>
<tr>
<td>MEMBR%</td>
<td>0.171739</td>
<td>0.059441</td>
<td>0.070522</td>
<td>-0.049686</td>
<td>0.064094</td>
<td>-0.128826</td>
<td>-0.081591</td>
<td>0.071953</td>
<td>-0.078674</td>
</tr>
<tr>
<td>Undiff%</td>
<td>0.122647</td>
<td>0.044845</td>
<td>0.092259</td>
<td>0.007690</td>
<td>-0.005845</td>
<td>0.046948</td>
<td>0.007664</td>
<td>0.023181</td>
<td>-0.036431</td>
</tr>
<tr>
<td>MissbFrekv%</td>
<td>-0.018759</td>
<td>0.000300</td>
<td>0.053074</td>
<td>0.040982</td>
<td>0.030965</td>
<td>0.018200</td>
<td>-0.043299</td>
<td>0.015426</td>
<td>-0.019546</td>
</tr>
</tbody>
</table>

Som en markör för neurologiska skador, använde vi AChE aktiviteten. Denna biomarkör kan både minska, t ex som svar på pesticid exponering, och öka, t ex vid exponering för metaller eller oxidativ skada (Lionetto et al. 2013). I alla bassängerna var AChE nivåerna hos vitmärlor som insamlats på de kontaminerade lokalerna förhöjda i jämförelse med referenslokaler (Figur 4). Vidare sammanfölj de förhöjda AChE nivåerna med störningar i den oxidativa balansen som visades genom de oxidativa status biomarkörerna. Eftersom vi saknar information om kemisk
Sammanfattning och kontaminanter i sedimenten är det inte möjligt att bedöma om de förhöjda AChE nivåerna var relaterade till specifika föroreningar eller ett resultat av enbart oxidativ stress, i enlighet med laborativa studier som visade att AChE ökar vid oxidativ stress i *Daphnia magna* (Eriksson Wiklund et al. 2012). Därför kan AChE rekommenderas som biomärkör för neurologiska skador om man även genomför flera studier av involverade stressfaktorer och mekanismer.

Som förväntat fanns signifikanta korrelationer mellan biomärkörerna (Tabell 5), vilket delvis är relaterat till deras beräkningsmetoder. Stark korrelation (>0.8) i denna tabell skulle snarare indikera redundans (överflöd) i svarsbedömningen än komplementaritet, som är suboptimal när man skall välja ut ett batteri av biomärkörer. Sådana starka korrelationer fanns emellertid endast för RNA/DNA vs. DNA/protein (-0.95) kvoter och för ORAC/TBARS kvot vs. TBARS (-0.94). Alla andra korrelationer klassificerades som låga till moderata. Eftersom DNA/protein kvoten inte befanns vara informativ som tillväxtbiomärkör kan detta mått raderas från batteriet av tillväxtbiomärkörer. Däremot är den negativa korrelationen mellan förhållandet ORAC/TBARS och TBARS förutbestämd på grund av att TBARS värden används som nämnare av den förra. Båda indikatorerna skall användas i den oxidativa stressmätningen eftersom de visar olika sidor av den oxidativa statusen hos en organism (Tabell 1). Den gemensamma analysen av följande biomärkörer skulle bilda ett fungerande batteri för *M. affinis* i fältstudier: **tillväxt biomärkörer** (individens protein innehåll och RNA/DNA förhållande), **oxidativ status biomärkörer** (TBARS, ORAC/DNA och ORAC/TBARS förhållanden, och AChE som **biomärkör för neurologiska skador**).

Tabell 5. Spearmans rangkorrelation för biomärkörer. De röda värdena indikerar signifikanta korrelationer (p < 0.05) mellan biomärkörer.

<table>
<thead>
<tr>
<th>Biomärkör</th>
<th>RNA/DNA</th>
<th>RNA/protein</th>
<th>DNA/protein</th>
<th>TBARS</th>
<th>ORAC/Protein</th>
<th>ORAC/TBARS</th>
<th>ORAC/DNA</th>
<th>AChE</th>
</tr>
</thead>
<tbody>
<tr>
<td>protein</td>
<td>0.585029</td>
<td>0.069947</td>
<td>-0.563496</td>
<td>-0.368132</td>
<td>-0.426995</td>
<td>0.231820</td>
<td>-0.457079</td>
<td>-0.588103</td>
</tr>
<tr>
<td>RNA/DNA</td>
<td>-0.037458</td>
<td>0.954388</td>
<td>-0.162080</td>
<td>-0.106546</td>
<td>0.122153</td>
<td>-0.278962</td>
<td>-0.356649</td>
<td></td>
</tr>
<tr>
<td>DNA/protein</td>
<td>0.302421</td>
<td>0.225498</td>
<td>0.189744</td>
<td>-0.141456</td>
<td>-0.009683</td>
<td>0.312295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBARS</td>
<td>0.234797</td>
<td>0.178436</td>
<td>-0.157872</td>
<td>0.295827</td>
<td>0.427329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORAC/Protein</td>
<td>0.228205</td>
<td>0.069935</td>
<td>-0.242507</td>
<td>0.545612</td>
<td>0.349435</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORAC/TBARS</td>
<td>0.243011</td>
<td>0.059309</td>
<td>-0.403844</td>
<td>-0.207007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORAC/DNA</td>
<td>0.360854</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inga signifikanta korrelationer mellan responsen hos de studerade biomärkörerna och de olika embryoavvikelsena observerades (Tabell 4). Den enda reproduktionsrelaterade variabeln som signifikant korrelerade till biomärkörerna var fekunditet, som visade positiv korrelation med proteininnehåll och RNA/DNA förhållande och negativ korrelation med DNA-och ORAC/protein förhållanden samt AChE nivåerna (Tabell 4). Avsaknaden av korrelationer mellan biomärkörerna och embryo missbildningarna trots att både biomärkörer och reproduktionsskador påverkas av de kontaminerade sedimenten föreslås...
bero på att olika fysiologisk respons analyserades via dessa endpoints. Vi har tidigare funnit att avvikande embryoutveckling var kopplad till vissa DNA addukter (Gorokhova et al. 2019). På samma sätt är avvikande embryoutveckling i denna studie troligtvis orsakad av en genotoxisk respons medan effekterna för biomarkörerna indikerar tillväxthämnning, oxidativ stress och neurologiska skador på honan. Dessa variabler kan således övervägas vara kompletterande och användas tillsammans när man skall mäta något så komplex som hälsostatus i miljön.

För att utvärdera huruvida reproduktionsvariabler och de biomarkörer rekommenderade att användas som ett batteri för att mäta hälsostatus hos amfipoder (sektion 6) kompletterar varandra, har vi genomfört en diskriminant analys som baseras på en Partial Least Square regression (PLS-DA) genom att använda en Statistical Analysis i MetaboAnalyst (https://www.metaboanalyst.ca/). Resultatet för modellen presenteras som Scores plot (Figur 6, AD) och den relativa betydelsen av variablerna bedömdes med hjälp av VIP-värden (Variance Importance in Projection; Figur 6BE). För att bedöma signifikansen av klass diskriminering, genomfördes en permutationstest (Figur 6 CF).

Figur 6. PLS-DA resultat för Model 1 (A-C) och Model 2 (D-F). Scores plot (A and D) indikerar separation mellan djur insamlade vid referens (grön) och kontaminerade (röd) lokaler. VIP värden (B och E) identifierar de mest signifikanta styrvariabler; VIP tröskel sattes till 0.7 och indikeras av en tunn vertikal linje. Permutations test statistik (C and F) visar den högre signifikansen av Model 2 jämfört med Model 1.

Målsättningen med PLS-DA var att skilja mellan amfipoder insamlade i de kontaminerade områdena och referenslokaler, dvs de exponerade och icke-exponerade djuren. Två modeller
jämfördes (Model 1 och Model 2); i båda modellerna användes kontamineringsnivån vid insamlingslokalen som en kategorisk beroende variabel (kontaminerad vs. referens) och:

- i Model 1, användes bara reproduktionsvariablen (Tabell 1) som styrvariabler;
- i Model 2, användes biomarkörerna som föreslogs komplementära I sektion 6 tillsammans med reproduktionsvariablen.

Resultaten indikerar klart att man avsevärt förbättrar separationen mellan grupperna genom att använda både reproduktionsvariabler och biomarkörer, dvs den prediktiva kapaciteten av modellen (Figu 6AD). Felklassificeringsmatrisen indikerar 94% korrekt klassificering för Model 2 och bara 70 % korrekt klassificering för Model 1.

Dessa resultat föreslår att för att öka pålitligheten (trovärdigheten) av miljöbedömningar för kontaminant exponering i Östersjösediment, borde analyser av embryomissbildningar hos amfipoder kombineras med biomarkörsmätningar som t ex i Model 2. Urvalet av biomarkörer bör inriktas sig på olika fysiologiska egenskaper för att ge ökad information om hälsotillståndet som kompletterar reproduktionsvariablen. Förutom biomarkörer för tillväxt, oxidativ status och neurologiska skador skulle fler studier behöva genomföras för att erhålla biomarkörer för immunologisk status och endokrin störning såväl som olika avgiftningsmarkörer.

6. Slutsatser

7. Litteraturreferenser

"Undersökning av hälsotillståndet hos abborre i recipienten för Norrsundets bruk, 2017"

Lars Förlin, Åke Larsson och Jari Parkkonen
Institutionen för biologi och miljövetenskap, Göteborgs Universitet

2018-06-15
Innehållsförteckning

<table>
<thead>
<tr>
<th>Del</th>
<th>Sida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammanfattning</td>
<td>3</td>
</tr>
<tr>
<td>Inledning och Syfte</td>
<td>4</td>
</tr>
<tr>
<td>Effektstudier hos fisk utanför skogsindustrier</td>
<td>4</td>
</tr>
<tr>
<td>Material och Metoder</td>
<td>6</td>
</tr>
<tr>
<td>Resultat och Diskussion</td>
<td>8</td>
</tr>
<tr>
<td>Inledning</td>
<td>8</td>
</tr>
<tr>
<td>Fiske, provtagning och analysarbete</td>
<td>8</td>
</tr>
<tr>
<td>Morfometriska mått (kropp- och organindex) och ålder</td>
<td>8</td>
</tr>
<tr>
<td>Konditionsfaktor, CF</td>
<td>8</td>
</tr>
<tr>
<td>LSI</td>
<td>9</td>
</tr>
<tr>
<td>GSI</td>
<td>9</td>
</tr>
<tr>
<td>Vitellogenin (hormonella effekter)</td>
<td>10</td>
</tr>
<tr>
<td>Röda blodceller och hemoglobin i blodet</td>
<td>10</td>
</tr>
<tr>
<td>Glukos i blodet</td>
<td>10</td>
</tr>
<tr>
<td>Vita blodceller</td>
<td>11</td>
</tr>
<tr>
<td>Jonbalansen</td>
<td>11</td>
</tr>
<tr>
<td>EROD i levern</td>
<td>12</td>
</tr>
<tr>
<td>Antioxidantenzyme och oxidativ stress</td>
<td>12</td>
</tr>
<tr>
<td>Acetylkolinesteras</td>
<td>12</td>
</tr>
<tr>
<td>Sammanvägda bedömningar och slutsatser</td>
<td>13</td>
</tr>
<tr>
<td>Erkännande</td>
<td>13</td>
</tr>
<tr>
<td>Litteraturreferenser</td>
<td>14</td>
</tr>
</tbody>
</table>
Sammanfattning

I denna undersökning har fysiologisk metodik använts för att undersöka hälsoeffekter hos abborre i recipienten för Norrsundets bruk. Mätningarna som görs speglar olika funktioner hos fisken såsom immunförsvaret, saltbalansen, blodets syreupptagningsförmåga, ämnesomsättning, försvar mot oxidativ stress m.m. Det rör sig om mätningar av ett 25-tal olika biokemiska och fysiologiska parametrar (biomarkörer) i undersökningen. Resultaten visar tre tydliga avvikelser mellan abborrarna från Norrsundet bruks recipient och referensen Axmarfjärden. Det rör mindre relativa gonadvikter (GSI), lägre nivåer av glukos i blodplasma och högre aktivitet av enzymet acetylkolinesteras (AChE) hos fisken i recipienten. För de övriga, drygt 20 ytterligare parametrar som analyserades ses inga skillnader mellan de båda undersökta grupperna. Det betyder att för de allra flesta undersökta funktioner hos fiskarna föreligger ingen skillnad mellan Norrsundet bruks recipient och referenslokalen Axmarfjärden.

För två av dessa tre variabler, plasmaglukos och enzymet AChE, är bedömningen att de skillnader som ses inte torde ha med de tidigare utsläppen från industrin att göra. Vilken orsak eller orsakerna är till dessa skillnader är dock oklar.

För observationen om mindre relativa gonader hos fiskarna från Norrsundet som indikerar en hämmad utveckling av gonadera, dvs en påverkan på forplantningen är bedömningen dock annorlunda och att den torde ha med de tidigare utsläppen från bruken att göra. Dessa resultat stämmer helt överens med de som redovisas i rapporten ”Uppföljande undersökning av tillväxt och forplantning hos abborre i recipienten till Norrsundets Bruk 2017” (Sandström och Abrahamsson, 2017). Där rapporteras förutom mindre relativa gonader också att könsmognaden är förskjuten mot högre ålder och större storlek hos fiskarna från Norrsundet. Från dessa resultat dras slutsatsen att det finns kvarstående effekter från tidigare utsläpp i Norrsundet Bruks recipient och det rör hämmad forplantning.

Sammantaget tyder således resultaten från denna fysiologiska hälsoundersökning på att det är en tydlig påverkan på gonadernas utveckling hos abborrarna i Norrsundet och att den med all sannolikhet beror på att fiskarna utsätts för rester från tidigare utsläpp som finns lagrade i sedimenten. När det gäller övriga fysiologiska funktioner som undersökts såsom immunförsvaret, jon-/saltbalansen, ämnesomsättningen, försvar mot oxidanter m.m. som kan påverkas av utsläpp från skogsindustrier visar resultaten nivåer i recipienten som är jämförbara med referensområden. Detta tyder på att tidigare utsläpp varav en del finns lagrade i recipientens bottensediment inte tycks påverka dessa fysiologiska funktioner.
Inledning och Syfte

Effektstudier hos fisk utanför skogsindustrier

I Sverige har det sedan många år använts fysiologiska, biokemiska och histologiska metoder (så kallade biomarkörer) för att studera hälsoeffekter hos fisk som exponeras för miljöfarliga ämnen. (t.ex. Larsson et al., 1985; Förlin et al., 1986; Larsson et al., 2003; Noaksson et al., 2005; Sturve et al., 2005; Asker et al., 2015). På så sätt har hälsoundersökningar av fisk med hjälp av biomarkörer avslöjat effekter av miljögifter eller komplexa utsläpp i förorenade recipienter. Det har handlat om studier i vattenområden i närheten av skogsindustrier, metallindustrier, petrokemiska industrier eller tätorter. Sedan slutet av 1980-talet används sådan metodik inom Naturvårdsverkets integrerade kustfiskövervakning för att undersöka hälsotillstånd hos fiskar i referenslokaler längs den svenska kusten (Sandström et al., 2005; Ronisz et al., 2005; Hanson et al., 2006; Hanson et al., 2009). Biomarkörer som används innefattar mätningar som kan ge information om en organisms avgiftningssystem är aktiverat eller ger information om påverkan på viktiga fysiologiska funktioner såsom påverkan av immunförsvar, blodets syretransporterande förmåga, saltbalans eller forplantningsstörningar (Haux och Förlin, 1988; Stegeman et al., 1992; Larsson et al., 2000; Van der Oost et al., 2003). De kan också visa att fisken har exponerats för kemiska ämnen, visar tidiga tecken på effekter av dessa ämnen eller om fisken är uppenbart stressad av något i miljön. Biomarkörerna kan inte identifiera vilka miljögifter som ger signaler om påverkan, men kan ge viss information om vilka ämnesgrupper det kan röra sig om.

undersökningar av abborrens hälsotillstånd under 1990-talet, den senaste 1995, visade
resultaten en påtaglig återhämtning med betydligt färre störningar såväl på individ som på
populationsnivå (Tabell 1).

Tabell 1. Översiktlig beskrivning av att hälsotillståndet hos abborre i recipienten för Norrsundets bruk
förbättrades under åren 1984 till 1995. Data från Andersson et al., 1988, Larsson et al., 2003 och Larsson
et al., 2009.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Avstånd från utsläpp, km</td>
<td>2-4,5</td>
<td>8</td>
<td>2-4,5</td>
<td>2-4,5</td>
<td>8</td>
</tr>
<tr>
<td>Könskörtlarnas storlek (GSI)</td>
<td>---</td>
<td>-</td>
<td>--</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Könshormoner i plasma</td>
<td>--</td>
<td>-</td>
<td>--</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leverstorlek (LSI)</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EROD-aktivitet</td>
<td>++++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Kolhydratmetabolism</td>
<td>++</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Klorid i plasma</td>
<td>--</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Röda blodkroppar (Ht)</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vita blodcellsbilden</td>
<td>---</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

+ indikerar värden över det normala; 0 indikerar normala värden; - indikerar värden under det normala.

Efter mitten av 1990-talet har undersökningar som gjorts på fiskar i Norrsundets recipient
fokuserat på abborrars tillväxt och fortplantning. Vid dessa upprepade tillfällen har det
observerats påverkan på dess könsmognad och gonadens utveckling (Sandström och
Abrahamsson, 2017). För mer läsning om effekter av svensk skogsindustri på vattenmiljön
inklusive fiskars hälsotillstånd, tillväxt och fortplantning rekommenderas två rapporter
”Miljösituationen förr och nu i skogsindustrirecipienter” (Sandström et al., 2015) och
”Återhämtning och kvarvarande miljöeffekter i skogsindustrins recipienter” (Sandström et
al., 2016).
Material och Metoder

Fångst och sumpning av fiskarna sköttes av Kjell Wilund, Gåsholma, och gjordes enligt de standardiserade föreskrifter som finns för denna typ av fiskundersökningar. Detta fiske gjordes parallellt och samordnades med det mer omfattande fisket för analys av tillväxt och könsmognad hos abborre (Sandström och Abrahamsson, 2017). Undersökning av fiskarnas hälsotillstånd gjordes i två områden, dels i Norrsundet bruks recipient och dels i referensen, Axmarfjärden (Figur 1). Provtagnings, provberedning och analyser gjordes enligt beskrivningar i undersökningstyp ”Hälsotillstånd hos kustfisk – biologiska effekter på subcellulär och cellulär nivå (Larsson och Förlin, 2006). Vilka effekt- och exponeringsvariabler som ingår i undersökningen av fiskens hälsotillstånd framgår av Tabell 2. All data presenteras som medelvärdet ± standardfelet. Signifikant skillnad etablerades med hjälp av Kruskal-Wallis test (p<0,05) och Mann-Whitney test (p<0,05).

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Mätvariabel/biomarkör</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energilagring, tillväxt, kondition</td>
<td>Total kroppsvikt, somatisk vikt, längd, ålder, somatisk konditionsfaktor</td>
</tr>
<tr>
<td>Fortplantning, hormonestörning</td>
<td>Gonadsomatiskt index (GSI), vitellogenin i blodplasma</td>
</tr>
<tr>
<td>Leverfunktion, avgiftning, oxidativ stress</td>
<td>Leversomatiskt index (LSI), EROD-aktivitet, aktiviteterna av glutationreduktas (GR), glutation S-transferas (GST) och katalas</td>
</tr>
<tr>
<td>Nerv-och muskelfunktion</td>
<td>Acetylkolinesteras aktivitet (AChE)</td>
</tr>
<tr>
<td>Kolhydratmetabolism/stress</td>
<td>Blodglukos</td>
</tr>
<tr>
<td>Syretransport, blodbildning</td>
<td>Hematokrit, omogna röda blodceller (iRBC), hemoglobin</td>
</tr>
<tr>
<td>Immunförsvar, vävnadsskador</td>
<td>Vita blodceller: lymfocyter, granulocyter, trombocyter</td>
</tr>
<tr>
<td>Saltbalans, cellskador</td>
<td>Klorid, natrium, kalium och kalcium i blodplasma</td>
</tr>
<tr>
<td>Exponeringsindikator</td>
<td>EROD-aktivitet, GR-aktivitet, GST-aktivitet, katalasaktivitet, acetylkolinesteras-aktivitet</td>
</tr>
</tbody>
</table>

Resultat och Diskussion

Inledning

Vid resultatsammanställningen och tolkningen av data från undersökningen av abborrarnas hälsotillstånd i recipienten för Norrsundets bruk har de undersökta fiskarna delats in i könsmogra honor och könsmogra hanar. Anledningen är att det är känt att vissa av variablerna som undersöks kan variera mellan kön. Det är samma upplägg som inom nationella övervakningen där fokus ligger på resultat för könsmogra honor. Könsmogra hanar är huvudsakligen medtagna i undersökningen för mätning av halten vitellogenin i blod som markör för en påverkan av hormonstörande ämnen.

Fiske, provtagnings och analysarbete

Fisket, med botten nät, sumpning av fisken (abbrorerna) i 2-4 dygn efter fisket och provtagnings på 20 könsmogra honor och 10 hanar av storleken 20-30 cm vid båda lokalerna gick helt utan anmärkning.

Morfometriska mått (kroppsvikt och organindex) och ålder

Konditionsfaktor, CF

Tabell 3. Kroppsvikt, kroppslängd, konditionsfaktor (CF), leversomatiskt index (LSI), gonad somatiskt index (GSI) och ålder hos abborrar från Norrsundet och Axmarfjärden.

<table>
<thead>
<tr>
<th>Station</th>
<th>Vikt, gram</th>
<th>Längd, cm</th>
<th>CF (B)</th>
<th>LSI, %</th>
<th>GSI, %</th>
<th>Ålder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogra honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrsundet</td>
<td>241 ± 12 (20) (A)</td>
<td>27,1 ± 0,4</td>
<td>1,19 ± 0,02</td>
<td>1,51 ± 0,04</td>
<td>3,55 ± 0,13 *</td>
<td>4,1 ± 0,1</td>
</tr>
<tr>
<td>Axmarfjärden</td>
<td>221 ± 10 (20)</td>
<td>26,6 ± 0,3</td>
<td>1,16 ± 0,02</td>
<td>1,56 ± 0,07</td>
<td>4,55 ± 0,34</td>
<td>4,3 ± 0,2</td>
</tr>
<tr>
<td>Könsmogra hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrsundet</td>
<td>191 ± 11 (10)</td>
<td>25,1 ± 0,6</td>
<td>1,19 ± 0,03</td>
<td>1,18 ± 0,07</td>
<td>7,14 ± 0,40</td>
<td>--</td>
</tr>
<tr>
<td>Axmarfjärden</td>
<td>212 ± 9 (10)</td>
<td>26,0 ± 0,3</td>
<td>1,21 ± 0,02</td>
<td>1,10 ± 0,03</td>
<td>8,98 ± 0,57</td>
<td>--</td>
</tr>
</tbody>
</table>

(A) medelvärde ± standardfel (antal fiskar); (B) konditionsfaktor, gram/cm³; * p < 0,05 jämfört med Axmarfjärden
I Tabell 3 redovisas LSI (lever somatiskt index) som är levervikten uttryckt i procent av somatisk kroppsvikt. Resultaten visar att det inte finns några statistiskt belagda skillnader mellan lokalerna. Det är samma resultat som Sandström och Abrahamsson (2017) redovisar. LSI mäts därför att en ökad storlek av levern storlek kan vara ett resultat av en naturlig variation i upplagring av näringsämnen (fetter och kolhydrater), men det kan också vara ett tecken på påverkan av miljöfarliga ämnen. Exponering för organiska miljögifter kan orsaka en förändrad storlek på lever som kan tyda på förändrad metabolisk aktivitet. Det är väl känt att leverns relativa storlek kan var större hos fisk som lever i referenten för skogsindustrier (Sandström et al., 2015), och det har varit fallet när fiskar undersöks i Norrsundet tidigare (Andersson et al., 1988; Sandström och Abrahamsson, 2011), men alltså inte i 2017 års undersökning. LSI-resultaten tyder således på att det successivt sker en förbättring i abborren hälsotillstånd i Norrsundets bruks recipient.

Förklaringar till att den relativa gonadvikten är lägre i recipienten är att abborrarna från Norrsundet området antingen har mindre antal ägg per vikenhet eller att det enskilda äggets tillväxt varit långsammare. Observationen indikerar en hämmad gonadutveckling jämfört med de från Axmarfjärden (Sandström och Abrahamsson, 2017). En försenad eller hämmad utveckling är i så fall en allvarlig effekt. Det kan vara flera men naturliga miljöfaktorer såsom vattnets temperatur och tillgången på föda, som kan påverka gonadens utveckling. En ökad tillgång på föda som leder till ökad tillväxt hos fisk kan i sin tur också leda till en minskad relativ gonadikt. Det kan samtidigt inte uteslutas att det i det här fallet också rör sig om en påverkan av några miljöfarliga ämnen. I detta fall fanns inga avvikelse i vare sig konditionsfaktor eller individuell tillväxthastighet (Sandström och Abrahamsson, 2017), vilket tyder på att naturliga faktorer inte bör ha varit orsaken.

En hämmad gonadutveckling är en välkänd respons hos fiskar som exponerats permanent för organiska miljögifter i laboratorieexperiment och hos fiskar i komplext förorenade recipienter såsom utanför skogsindustrier (Sandström et al., 2015). Det kan således inte uteslutas att de tidigare utsläppen från Norrsundets bruk kan ha bidragit till denna effekt, som således kan ha sitt ursprung i historisk tillförsel. Det verkar därför möjligt att de ämnen som orsakar de observerade effekterna på den relativa gonadvikten tycks finnas ackumulerade i recipientens bottensediment och frigörs successivt vid erosion.

I miljöövervakningssammanhang mäts halten vitellogenin i blodplasma hos hanfisk för att ta reda på om de exponerats för ämnen med östrogenliknande effekter. I Tabell 4 kan ses att det inte föreligger några statistiskt belagda skillnader mellan lokalerna. Vitellogeninhalterna i hanfisken bedöms dock som lite höga. Oftast ser man nivåer på storleksordningen 0,2-1,0 µg/ml men här är nivåerna storleksordningen drygt 2,6 µg/ml. Men det gäller i båda områden så det går inte att peka ut någon särskild källa för eventuellt utsläpp av ämnen med denna östrogena verkan.

Röda blodceller och hemoglobin i blodet

Det undersöktes om fisken uppvisar blodbrist eller någon annan form av effekt på syreupptagningsförmågan genom att mäta blodets volym av röda blodceller (Hematokrit, Ht), blodets innehåll av hemoglobin (Hb) och andel omogna röda blodceller (iRBC). Inga statistiskt signifikanta skillnader noterades i Ht-värdet, Hb-halten eller andelen iRBC mellan abborrgroupperna (Tabell 4). Det var i undersökningar på 1980-talet som det observerades kraftig påverkan på de röda blodcellerna hos abborre i Norrsundet bruks recipient (Andersson et al., 1988). I de uppföljande undersökningarna under 1990-talet avklingade dessa effekter successivt (Tabell 1; Larsson et al., 2003). Sedan dess är denna undersökning den senaste omfattande uppföljningen av fiskens hälsotillstånd i området. Resultaten från uppföljningen 2017 visar således ingen påverkan på blodcellerna hos abborre vilket tyder på att avklingningen som noterades för drygt 20 år sedan håller i sig och att området verkar ha återhämtat sig med avseende på störningar av blodcellerna. Detta tyder på en tydlig positiv återhämtning sedan industrin lagts ner.

Glukos i blodet

Halten glukos i blodet (Tabell 4) analyserades för att få en uppfattning om kolhydratmetabolismen kunde vara påverkad. Resultaten visar en tydlig statistisk skillnad med lägre nivåer hos fisken från Norrsundet jämför med referensen. I tidiga undersökningar i Norrsundet har både högre och lägre nivåer observerats hos abborre i recipienten jämfört med referensområden, vilket indikerar en påverkan på kolhydratmetabolismen hos fisken.
(Andersson et al., 1988). Vid uppföljande undersökningar under 1990-talet har denna påverkan på glukoshalten i blodet försunnit (Tabell 1; Larsson et al., 2003). Vad orsaken är till att halten av glukos är lägre i Norrsundet jämfört med Axmarfjärden i 2017 års undersökning är oklar. Halten av glukos i blodplasman i abborrarna från Norrsundet är dock jämförbar med nivåerna hos abborrar i andra referensområden i Östersjön, medan den är lite förhöjd hos fisken från Axmarfjärden. Bedömningen är därför att det inte är troligt att de tidigare utsläppen från Norrsundets bruk kan ha bidragit till denna effekt, dvs att det inte är troligt att det finns ämnen lagrade i recipientens bottensediment som påverkar kolhydratmetabolismen hos fisk i området.

Vita blodceller

Vita blodcellsbilden undersöks för att ta reda på om immunförsvaret är påverkat. Abborrarna från Norrsundet uppvisar inga skillnader jämfört med referensen i vita blodcellsbilden (Tabell 5). Det gäller således andelen lymfocyter, granulocyter, trombocyter och totala halten vita blodceller (WBC). I undersökningarna som gjordes under 1980-talet i Norrsundets recipient observerades en tydlig påverkan med lägre nivåer av de vita blodcellerna vilket indikerade hämman immunförsvar (Andersson et al., 1988). I de uppföljande undersökningarna under 1990-talet återgick de vita blodcellerna till normala nivåer (Larsson et al., 2003; se även Tabell 1). Bedömningen var att de förändringar som gjordes i massaindustrin inkluderande såväl processförändringar som bättre rening av utsläppen var orsaken till dessa förbättringar.

Tabell 5. Andelen lymfocyter (%), granulocyter (%), trombocyter (%), total andelen vita blodceller (WBC, %) och andelen omogna röda blodceller (iRBC, %) i blodet hos abborre från Norrsundet och Axmarfjärden.

<table>
<thead>
<tr>
<th>Station</th>
<th>Lymfocyter %</th>
<th>Granulocyter %</th>
<th>Trombocyter %</th>
<th>WBC %</th>
<th>iRBC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrsundet</td>
<td>2,83 ± 0,18 (10) (A)</td>
<td>1,09 ± 0,08</td>
<td>1,61 ± 0,15</td>
<td>5,54 ± 0,27</td>
<td>0,71 ± 0,08</td>
</tr>
<tr>
<td>Axmarfjärden</td>
<td>2,81 ± 0,17 (10)</td>
<td>1,41 ± 0,09</td>
<td>1,66 ± 0,12</td>
<td>5,67 ± 0,26</td>
<td>0,58 ± 0,09</td>
</tr>
<tr>
<td>Könsmogna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrsundet</td>
<td>2,66 ± 0,23 (9)</td>
<td>0,91 ± 0,10</td>
<td>2,02 ± 0,20</td>
<td>5,60 ± 0,40</td>
<td>0,72 ± 0,11</td>
</tr>
<tr>
<td>Axmarfjärden</td>
<td>2,41 ± 0,16 (10)</td>
<td>1,20 ± 0,16</td>
<td>1,55 ± 0,20</td>
<td>5,16 ± 0,38</td>
<td>0,70 ± 0,10</td>
</tr>
</tbody>
</table>

(A) medelvärde ± standardfel (antal fiskar)

Jonbalansen

I undersökningen analyserades plasmahalterna av jonerna klorid, natrium, kalium och kalcium för att undersöka om jonbalansen uppvisar rubbningar i jonreglerande organ (Tabell 6.). Resultaten från undersökningarna visar att halterna av samtliga analyserade joner hos fisken från Norrsundet inte avviker från nivåerna i referensen Axmarfjärden. Halterna i blodplasman hos fisken i båda områdena är jämförbara med nivåerna hos abborrar från andra områden i egentliga Östersjön. Resultaten från 2017 är undersökning visar således att det inte är någon påverkan på jon-/saltbalansen hos fisken i recipienten för Norrsundets bruk.

<table>
<thead>
<tr>
<th>Station</th>
<th>Klorid mmol/l</th>
<th>Natrium mmol/l</th>
<th>Kalium mmol/l</th>
<th>Kalcium mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmöna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrsundet</td>
<td>100,3 ± 0,7 (20) (A)</td>
<td>161,8 ± 1,5</td>
<td>3,49 ± 0,12</td>
<td>1,27 ± 0,07</td>
</tr>
<tr>
<td>Axmarfjärden</td>
<td>99,1 ± 2,1 (14)</td>
<td>158,5 ± 2,9</td>
<td>3,49 ± 0,11</td>
<td>1,36 ± 0,06</td>
</tr>
<tr>
<td>Könsmöna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrsundet</td>
<td>101,0 ± 1,7 (10)</td>
<td>157,9 ± 4,5</td>
<td>3,29 ± 0,17</td>
<td>1,21 ± 0,03</td>
</tr>
<tr>
<td>Axmarfjärden</td>
<td>96,1 ± 1,9 (9)</td>
<td>148,4 ± 4,4</td>
<td>3,72 ± 0,18</td>
<td>1,23 ± 0,08</td>
</tr>
</tbody>
</table>

(A) medelvärde ± standardfel (antal fiskar)

EROD i levern

Antioxidanzymer och oxidativ stress

Inget av de tre enzymerna glutation S-transferas (GST), glutationreduktas (GR) eller katalas i levern uppvisar signifikanta skillnader hos abborrar mellan de båda lokalerna Norrsundet och Axmarfjärden. (Tabell 6). Det betyder att resultaten indikerar att det inte verkar föreligga någon påverkan på fiskarnas antioxidantförsvar och således heller inte någon indikation om oxidativ stress i Norrsundets bruks recipient.

Acetylkinoloinesteras

Aktiviteten av enzymet acetylkinoloinesteras (AChE) reglerar nedbrytningen av transmittor-substansen acetylkinol i nerv-/muskelsystemet. Aktivitet mäts i muskel för att ta reda på om fisken är exponerade för vissa miljöfarliga ämnen som är kända att hämma detta enzym. Mest kända exempen på sådana ämnen är några insektbekämpningsmedel som inte längre används i någon stor utsträckning. Det finns även misstanke om att höga nivåer av andra ämnen kan ge en hämning där ibland en stor grupp ämnen som kallas organofosfatesstetrar som finns i vissa bekämpningsmedel, mjukgörare i plaster och syntetiska smörjöljor. Eftersom resultaten visar att nivåerna är högre hos fisken i Norrsundet jämfört med referensen Axmarfjärden (Tabell 7) kan det således uteslutas att det finns ämnen i Norrsundets bruks recipient som hämmer enzymet AChE. Vad orsaken är till att det är en relativt stor skillnad mellan lokalerna är dock oklar. Det är intressant att konstatera att nivån hos fisken i Norrsundet är bland de högsta och nivån i Axmarfjärden är bland de lägsta i jämförelse med nivåerna i andra referensområden i Östersjön.
Tabell 7. Aktiviteter av enzymerna EROD, glutationreduktas (GR), glutation S-transferas (GST), katalas och acetylkolinesteras (AChE) hos abborre från Norrsundet och Axmarfjärden.

<table>
<thead>
<tr>
<th>Station</th>
<th>EROD (1)</th>
<th>GR (1)</th>
<th>GST (2)</th>
<th>Katalas (2)</th>
<th>AChE (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrsundet</td>
<td>0,22 ± 0,01 (20)</td>
<td>11,7 ± 0,4</td>
<td>0,124 ± 0,004</td>
<td>170 ± 7</td>
<td>25,3 ± 1,2 *</td>
</tr>
<tr>
<td>Axmarfjärden</td>
<td>0,20 ± 0,01 (20)</td>
<td>11,8 ± 0,3</td>
<td>0,128 ± 0,004</td>
<td>178 ± 10</td>
<td>18,5 ± 1,6</td>
</tr>
<tr>
<td>Könsmogna hajar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norrsundet</td>
<td>0,34 ± 0,03 (10)</td>
<td>11,5 ± 0,3</td>
<td>0,143 ± 0,006</td>
<td>234 ± 12</td>
<td>23,5 ± 1,7</td>
</tr>
<tr>
<td>Axmarfjärden</td>
<td>0,26 ± 0,04 (10)</td>
<td>12,0 ± 0,4</td>
<td>0,137 ± 0,003</td>
<td>195 ± 16</td>
<td>20,8 ± 2,1</td>
</tr>
</tbody>
</table>

(1) nmol/mg prot. x min; (2) µmol/mg prot. x min; * p < 0,05 jämfört med Axmarfjärden

Sammanvägda bedömningar och slutsatser

I denna undersökning som rör mätningar av ett 25-tal olika biokemiska och fysiologiska parametrar (biomarkörer), visar resultaten tre tydliga avvikelser i dessa mätvaribler mellan abborrarna från Norrsundet bruks recipient och referensen Axmarfjärden. Dessa skillnader är således mindre relativa gonadvikter (GSI), lägre nivåer av glukos i blodplasma och högre aktivitet av enzymet acetylkolinesteras (AChE) hos fiskarna i recipienten. För två av dessa tre variabler, plasmaglukos och enzymet AChE, är bedömningen att de inte torde ha med de tidigare utsläppen från industrin att göra. Vilken orsak eller orsakerna är till skillnaderna är dock oklar.

Bedömningen för den tredje signifikanta skillnaden är dock annorlunda. Det rör således observationen om mindre relativa gonader hos fiskarna från Norrsundet som indikerar en hämmad utveckling av gonaderna, dvs en påverkan på forplantningen. Den effekten är med all sannolikhet orsakad av att fiskarna utsätts för rester från tidigare utsläpp som finns lagrade i sedimenten.

När det gäller de övriga fysiologiska funktioner såsom immunförsvar, jon-/saltbalansen, ämnesomsättningen, försvar av oxidanter, avgiftningskapacitet m.m. som kan påverkas av utsläpp från skogsindustrier visar resultaten på en återhämtning till nivåer i recipienten som är jämförbara med referensområden. Detta tyder på att tidigare utsläpp varav en del finns lagrade i recipientens bottensediment inte tycks påverka dessa fysiologiska funktioner.

Erkännande

Vi vill tacka Olof Sandström och Noomi Asker för värdefulla synpunkter och kommentarer på rapporten, och Linda Andersson och Jenny Lycken för teknisk assistans vid provtagningen och analysarbetet.
Litteraturreferenser

Sandström O., Grahn O., Larsson Å., Malmaeus M. och Viktor T. 2016. Återhämtning och kvarvarande miljöeffekter i skogsindustrins recipienter. Utvärdering av 50 års miljöundersökningar IVL-rapport B 2272

"Undersökning av hälsotillståndet hos abborre i Saltsjön och Bråviken, 2017"

Lars Förlin (1), Åke Larsson (1) och Jari Parkkonen (1)

(1) Institutionen för biologi och miljövetenskap, Göteborgs Universitet

2019-02-15
Innehållsförteckning

Inledning 3
Syfte 4
Material och Metoder 4
Resultat och Diskussion 6

Inledning 6
Fiske och provtagning 6
Morfometriska mått och ålder 6
Konditionsfaktor, CF 7
LSI 7
GSI och vitellogenin 7

Röda blodceller och hemoglobin i blodet 8
Glukos i blodet 9
Vita blodceller 9
Jonbalansen 9
EROD i levern 10
Antioxidantencymer och oxidativ stress 11
Acetylkolinenesteras 11

Sammanfattande beskrivning av påverkan i lokalerna 12
Sammanvägda bedömningar och slutsatser 14
Erkännanden 15
Litteraturreferenser 15
Inledning

I föreliggande undersökning har fiskfysiologisk metodik använts för att undersöka hälsoeffekter hos abborrar i Saltsjön i centrala delar av Stockholm och i de inre delarna av Bråviken. Resultaten från dessa recipientlokaler har jämförts med resultat från referenslokalen Kvädkåfjärden, vilken ingår i nationella övervakningsprogrammet. Metodiken som används för att studera effekter hos abborrarna är av samma typ som för de effektstudier som idag görs bland annat i den nationella kustfiskövervakningen. Undersökningarna är en del i ett stort screeningsprojekt som är initierat av Naturvårdsverket för att kartlägga miljögifters biologiska effekter vid ett antal svenska kustområden.

Effektstudier hos fisk

I Sverige har det sedan många år använts fysiologiska, biokemiska och histologiska metoder (så kallade biomarkörer) för att studera hälsoeffekter hos fisk som exponeras för miljöfarliga ämnen. Detta har gjorts i såväl kontrollerade akvarieundersökningar i laboratorium som i fältundersökningar på fiskar från mer eller mindre förorenade recipienter för avloppsvatten (t.ex. Larsson et al., 1985; Förlin et al., 1986; Larsson et al., 2003; Noaksson et al., 2005, Sturve et al., 2005; Asker et al., 2015). På så sätt har hälsoundersökningar av fisk med hjälp av biomarkörer avslöjat effekter av miljögifter eller komplexa utsläpp i förorenade recipienter. Det har handlat om vattenområden i närheten av skogsindustrier, metallindustrier, petrokemiska industri och tätorter. Sedan slutet av 1980-talet används sådan metodik inom Naturvårdsverkets integrerade kustfiskövervakning för att undersöka hälsotillstånd hos fiskar i referenslokaler längs den svenska kusten (Sandström et al., 2005; Ronisz et al., 2005; Hansson et al., 2006; Hanson et al., 2009).

Biomarkörer som används innefattar mätningar som kan ge information om en organisms avgiftningssystem är aktiverat eller ger information om påverkan på viktiga fysiologiska funktioner såsom påverkat immunförsvar eller förtplantningssstörningar (Haux and Förlin, 1988; Stegeman et al., 1992; Larsson et al., 2000; Van der Oost et al., 2003). Biomarkörerna kan delas in i markörer för exponering som visar att kemiska ämnen tagits upp av organismen och olika försvarsmechanismer har aktiverats och i markörer för effekt som visar att olika fysiologiska funktioner är påverkade. Det betyder att biomarkörer på individnivå kan visa att fisken har exponerats för kemiska ämnen, visar tidiga tecken på effekter av dessa ämnen eller om fisken är uppenbart stresad av något i miljön. Biomarkörerna kan oftast inte identifiera exakt vilka miljögifter som ger signaler om påverkan, men de kan ofta ge information om vilka ämnesgrupper det kan röra sig om.

Även i Bråviken har tidigare genomförts undersökningar på fiskars hälsa (Hanson et al., 2010). Men undersökningar har inte tidigare gjorts i Bråvikens allra innersta delar, nära Motala ströms mynning med hamnverksamhet, avloppsreningsverk och dagvattenutsläpp från Norrköping, men dock i angränsande Svensksundsviken. Jämfört med undersökningarna i Stockholm var undersökningen som gjordes mindre omfattande i Bråviken. Det tydligaste påverkan man såg hos fisken i Svensksundsviken var att den var magrare än i referensområdet Kvädöfjärden. Det redovisas också förhöjd aktivitet av avgiftningsenzymet EROD och högre hemoglobinhalter hos fisken från Bråviken. Dessutom finns det en tendens till att fisken tillväxer något långsammare i Bråviken jämfört med fisken från Kvädöfjärden.

Syfte

I föreliggande undersökning har fiskfysiologisk metodik använts för att undersöka om abborrar som lever i antropogent påverkade områden dels mitt i Stockholm och dels i Bråvikens inre delar med påverkan från både större tätorter och större industrier uppvisar hälsoeffekter. Metodiken som används för att studera effekter hos abborrarna är av samma typ som för de effektstudier som idag görs bland annat i den nationella kustfiskövervakningen (Mustamäki et al., 2017a, b, c). Syftet med undersökningarna är att försöka bedöma vilka hälsoeffekter fiskar uppvisar som lever nära större tätorter på lokaler som kan beskrivas som recipientlokaler. För att få en uppfattning om påverkan i recipientlokalerna har fiskarna från dessa jämförts med fiskar från ett referensområde, Kvädöfjärden som är en referenslokal inom den nationella miljöövervakningen (Mustamäki et al., 2017a). De undersökta lokalerna Saltsjön och Bråviken är, tillsammans med referenslokal Kvädöfjärden, angivna i Figur 1. Lokalernas placering har framtagits i samarbete med respektive Länsstyrelser och Naturvårdsverket.

Figur 1. Lokaler, Bråviken (vänster) och Saltsjön (höger) i fiskfysiologi undersökningen som utfördes hösten 2017.

Material och Metoder

Fångst och sumpning av fiskarna gjordes vid undersökningen i Saltsjön av Roger Huonen (Yoldia Environmental Consulting AB) och i Bråviken av Kenneth Winroth (Länsstyrelsen Östergötland) och gjordes enligt de standardiserade föreskrifter som finns för denna typ av fiskundersökningar. Undersökning av fiskarnas hälsotillstånd gjordes i två områden, dels i
recipienten Saltsjön i centrala delen av Stockholm, där sumpning och provtagning av fiskarna gjordes vid Beckholmen dels i Bråviken där sumpning och provtagning gjordes vid Djurö kvarn. I Tabell 1 anges positionerna för fisket i de olika lokalerna.

Tabell 1. Positioner för undersökta stationer i de områden där provfiske utfördes hösten 2017.

<table>
<thead>
<tr>
<th>Station</th>
<th>koordinater</th>
<th>Provtagningsdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saltsjön/Beckholmen</td>
<td>WGS84 decimal (lat, lon) 59.321, 18.107</td>
<td>20170916</td>
</tr>
<tr>
<td>Bråviken/Djurö kvarn</td>
<td>WGS84 decimal (lat, lon) 58.625, 16.313</td>
<td>20170925</td>
</tr>
<tr>
<td>Kvädöfjärden</td>
<td>WGS84 decimal (lat, lon) 58.001, 15.787</td>
<td>20170926</td>
</tr>
</tbody>
</table>

Provtagning, provberedning och analyser gjordes enligt beskrivningar i undersökningstyp ”Hälsotillstånd hos kustfisk – biologiska effekter på subcellulär och cellulär nivå (Larsson och Förlin, 2006). Vilka effekt- och exponeringsvariabler som ingår i undersökningen av fiskens hälsotillstånd framgår av Tabell 2. All data presenteras som medelvärdet ± standardfelet. Signifikant skillnad etablerades med hjälp av Kruskal-Wallis test (p<0,05) och Mann-Whitney test (p<0,05).

I korthet gick provtagningen till så att fiskens längd och vikt mättes, dess kön registrerades och en mängd prover togs för mätning av olika biokemiska och fysiologiska parametrar (biomarkörer). Avsikten var att ta prover från 20 könsmogna honor och 10 hanar.

Tabell 2. Effekt- och exponeringsvariabler/indikatorer som ingår i undersökningen av fiskens hälsotillstånd (Larsson och Förlin, 2006).

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Mätvariabel/biomarkör</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energilagring, tillväxt, kondition</td>
<td>Total kroppsvikt, somatisk vikt, längd, ålder, somatisk konditionsfaktor</td>
</tr>
<tr>
<td>Fortplantning, hormonstörning</td>
<td>Gonadsomatiskt index (GSI), vitellogenin i blodplasma</td>
</tr>
<tr>
<td>Leverfunktion, avgiftning, oxidativ stress</td>
<td>Leversomatiskt index (LSI), EROD-aktivitet, aktiviteterna av glutationreduktas (GR), glutation S-transferas (GST) och katalas</td>
</tr>
<tr>
<td>Nerv-och muskelfunktion</td>
<td>Acetylkolinesteras aktivitet (AChE)</td>
</tr>
<tr>
<td>Kolhydratmetabolism/stress</td>
<td>Blodglukos</td>
</tr>
<tr>
<td>Syretransport, blodbildning</td>
<td>Hematokrit, omogna röda blodceller (IRBC), hemoglobin</td>
</tr>
<tr>
<td>Immunförsvar, vävnadsskador</td>
<td>Vita blodceller: lymfocyter, granulocyter, trombocyter</td>
</tr>
<tr>
<td>Saltbalans, cellskador</td>
<td>Klorid, natrium, kalium och kalcium i blodplasma</td>
</tr>
<tr>
<td>Exponeringsindikator</td>
<td>EROD-aktivitet, GR-aktivitet, GST-aktivitet, katalasaktivitet, acetylkolinesteras-aktivitet, extraktivämnen</td>
</tr>
</tbody>
</table>
Inledning

Vid resultatsammanställningen och tolkningen av data från undersökningen av abborrarnas hälsotillstånd har de undersökta fiskarna delats in i de två grupperna könsmogna honor och könsmogna hanar. Anledningen är att det är känt att vissa av variablerna som undersöks kan variera mellan kön och med könsmognad. Det är samma upplägg som inom nationella övervakningen där fokus ligger på resultat för könsmogna honor. Könsmogna hanar är huvudsakligen medtagna i undersökningen för mätning av halten vitellogenin i blod som markör för en påverkan av hormonstörande ämnen.

Fiske, provtagning och analysarbete

Avsikten var att ta prover från 20 könsmogna honor och 10 hanar av storleken 20-30 cm från varje lokal. Det lyckades få 20 honor från samtliga lokaler medan det inte gick att få tag på fullt antal hannar (tabell 3). Det är inte ovanligt att tillgången är begränsad på hannar av den storleksklass som prover tas från. I bästa fall kan cirka en 1/3-del vara hannar men ofta är andelen lägre. Förutom att det således var lite få hanar i lokalerna gick provtagningen av fisken utan några problem.

Tabell 3. Antal könsmogna hon- och hanabborrar och juvenila honabborrar samt andel könsmogna honor som prover tagits från för undersökning av fiskens hälsotillstånd i Finsta, Nacka och Åstön.

<table>
<thead>
<tr>
<th>Station</th>
<th>Könsmogna abborr honor</th>
<th>Könsmogna abborr hanar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvädöfjärden</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Saltsjön/Beckholmen</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Bråviken</td>
<td>20</td>
<td>7</td>
</tr>
</tbody>
</table>

Morfometriska mått (kroppss- och organindex) och ålder.

Konditionsfaktor, CF

I Tabell 4 redovisas konditionsfaktorn (CF). CF som är ett mått som beskriver relationen mellan kroppsvikt och längd visade tydliga skillnader statistiska skillnader mellan lokalerna. CF är därvidlag betydligt mindre i de båda recipientlokalerna jämfört med referenslokalen. Resultaten visar således att fiskarna från Saltsjön och Bråviken är magrare än fisken från
Hämisenare utveckling, försenad och/eller hämmad gonadutveckling möjlig förklaring till områdena som har naturliga orsaker såsom olika födoväxlingsförhållanden, temperaturer och födosätt. Den tjockare abborran från Bråviken kan inte uteslutas att detta är ett resultat av påverkan av antropogena utsläpp och förändringar i de påverkade områdena. En sämre tillgång på föda kan för övrigt också vara resultatet av en försämrad miljösituation. Magrare abborrar jämfört med referensen Kvädöfjärden har observerats i tidigare undersökningar i Svensksundet som ligger lite längre ut i Bråviken (Hanson et al., 2010).

Det kan finnas flera förklaringar till att den relativt gynnsamma hanafiskens områden är i så fall en allvarlig effekt. Orsaken kan vara flera men naturliga orsaker såsom olika födoväxlingsförhållanden, temperaturer och födosätt.

Det är känt att leverns relativa storlek kan vara större hos fisk som lever i recipienten för utsläpp från industriell aktivitet. Exponering för organiska miljögifter kan orsaka en upplagring av näringsämnen (fetter och kolhydrater) i levern, men kan också vara ett tecken på att leverns relative storlek kan var större hos fisk som lever i recipienten för utsläpp från industriella aktiviteter (Sandström et al., 2015). I föreliggande undersökning visar resultaten att det inte finns några statistiskt belagda skillnader mellan lokalerna. Det går dock inte att helt bortse från att det relativt leverstorleken (LSI) visar en tendens till att vara större hos fiskarna från Bråviken jämfört med referensen Kvädöfjärden. Resultaten tyder således på att det inte går att utesluta att leverns storlek är något påverkad hos fisken från Stockholmslokalen. Såväl mekanismen bakom som betydelsen av denna leverförändring är oklar.

I Tabell 4 redovisas GSI (gonad somatiskt index) som är levervikten uttryckt i procent av somatisk kroppsvikt. Skillnaderna i leverns relativa storlek kan vara ett resultat av variation i upplagring av näringsämnen (fetter och kolhydrater) i levern, men kan också vara ett tecken på att leverstorleken (LSI) visar en tendens till att vara större hos fiskarna från Bråviken jämfört med referensen Kvädöfjärden.

Det kan finnas flera förklaringar till att den relativt gynnsamma hanafiskens områden är i så fall en allvarlig effekt. Orsaken kan vara flera men naturliga orsaker såsom olika födoväxlingsförhållanden, temperaturer och födosätt.

LSI

Tabell 4 redovisas LSI (lever somatiskt index) och GSI (gonad somatiskt index) hos fisk från Kvädöfjärden, Saltsjön/Beckholmen och Bråviken/Djurö kvarn.

<table>
<thead>
<tr>
<th>Station</th>
<th>Vikt, gram</th>
<th>Långd, cm</th>
<th>CF (B)</th>
<th>LSI, %</th>
<th>GSI, %</th>
<th>Ålder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könningsmogna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvädöfjärden</td>
<td>256 ± 10 (A)</td>
<td>27,0 ± 0,4</td>
<td>1,29 ± 0,01</td>
<td>1,50 ± 0,06</td>
<td>4,91 ± 0,11</td>
<td>3,0 ± 0,1</td>
</tr>
<tr>
<td>Saltsjön/Beckholmen</td>
<td>199 ± 14 *</td>
<td>25,7 ± 0,5 *</td>
<td>1,14 ± 0,02 *</td>
<td>1,74 ± 0,08</td>
<td>2,80 ± 0,10 *</td>
<td>5,5 ± 0,3 *</td>
</tr>
<tr>
<td>Bråviken/Djurö kvarn</td>
<td>157 ± 7 *</td>
<td>24,4 ± 0,4 *</td>
<td>1,09 ± 0,01 *</td>
<td>1,51 ± 0,05</td>
<td>4,78 ± 0,20</td>
<td>4,1 ± 0,3 *</td>
</tr>
</tbody>
</table>

(Kvädöfjärden) LSI

Tabell 4 redovisas LSI (lever somatiskt index) som är levervikten uttryckt i procent av somatisk kroppsvikt. Skillnaderna i leverns relativa storlek kan vara ett resultat av variation i upplagring av näringsämnen (fetter och kolhydrater) i levern, men kan också vara ett tecken på att leverstorleken (LSI) visar en tendens till att vara större hos fiskarna från Bråviken jämfört med referensen Kvädöfjärden. Resultaten tyder således på att det inte går att utesluta att leverns storlek är något påverkad hos fisken från Stockholmslokalen. Såväl mekanismen bakom som betydelsen av denna leverförändring är oklar.

GSI och vitellogenin

I Tabell 4 redovisas GSI (gonad somatiskt index) som är gonadvikten uttryckt i procent av somatisk kroppsvikt. Resultaten visar att GSI är lägre hos både hon- och hanabborrar från Saltsjön jämfört med referensen Kvädöfjärden. Även hanfisken från Bråviken uppvisar mindre relativa gonadvikter jämfört med referensen.

Det kan finnas flera förklaringar till att den relativt gynnsamma hanafiskens områden är i så fall en allvarlig effekt. Orsaken kan vara flera men naturliga orsaker såsom olika födoväxlingsförhållanden, temperaturer och födosätt.

LSI

I Tabell 4 redovisas LSI (lever somatiskt index) som är levervikten uttryckt i procent av somatisk kroppsvikt. Skillnaderna i leverns relativa storlek kan vara ett resultat av variation i upplagring av näringsämnen (fetter och kolhydrater) i levern, men kan också vara ett tecken på att leverstorleken (LSI) visar en tendens till att vara större hos fiskarna från Bråviken jämfört med referensen Kvädöfjärden. Resultaten tyder således på att det inte går att utesluta att leverns storlek är något påverkad hos fisken från Stockholmslokalen. Såväl mekanismen bakom som betydelsen av denna leverförändring är oklar.

GSI och vitellogenin

I Tabell 4 redovisas GSI (gonad somatiskt index) som är gonadvikten uttryckt i procent av somatisk kroppsvikt. Resultaten visar att GSI är lägre hos både hon- och hanabborrar från Saltsjön jämfört med referensen Kvädöfjärden. Även hanfisken från Bråviken uppvisar mindre relativa gonadvikter jämfört med referensen.

Det kan finnas flera förklaringar till att den relativt gynnsamma hanafiskens områden är i så fall en allvarlig effekt. Orsaken kan vara flera men naturliga orsaker såsom olika födoväxlingsförhållanden, temperaturer och födosätt.

LSI

I Tabell 4 redovisas LSI (lever somatiskt index) som är levervikten uttryckt i procent av somatisk kroppsvikt. Skillnaderna i leverns relativa storlek kan vara ett resultat av variation i upplagring av näringsämnen (fetter och kolhydrater) i levern, men kan också vara ett tecken på att leverstorleken (LSI) visar en tendens till att vara större hos fiskarna från Bråviken jämfört med referensen Kvädöfjärden. Resultaten tyder således på att det inte går att utesluta att leverns storlek är något påverkad hos fisken från Stockholmslokalen. Såväl mekanismen bakom som betydelsen av denna leverförändring är oklar.

GSI och vitellogenin

I Tabell 4 redovisas GSI (gonad somatiskt index) som är gonadvikten uttryckt i procent av somatisk kroppsvikt. Resultaten visar att GSI är lägre hos både hon- och hanabborrar från Saltsjön jämfört med referensen Kvädöfjärden. Även hanfisken från Bråviken uppvisar mindre relativa gonadvikter jämfört med referensen.

Det kan finnas flera förklaringar till att den relativt gynnsamma hanafiskens områden är i så fall en allvarlig effekt. Orsaken kan vara flera men naturliga orsaker såsom olika födoväxlingsförhållanden, temperaturer och födosätt.

I Tabell 5 redovisas halten vitellogenin (guleprotein) i blodet hos honfisken. När gonaderna tillväxer hos abborrarna under hösten bildas vitellogenin i levern under inverkan av honfiskens östrogen och transporteras via blodet till gonaden för att inkorporeras i ägget. Resultaten visar att det inte föreligger någon skillnad mellan lokalerna. Resultaten visar också att de könsmogna honfiskarna är i full gång med att producera vitellogenin för att utveckla sina gonader för den kommande leksäsongen.

<table>
<thead>
<tr>
<th>Station</th>
<th>Hb, g/l</th>
<th>Ht, %</th>
<th>Glukos, mmol/l</th>
<th>Vitellogenin, µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvädöfjärden</td>
<td>63,8 ± 0,9 (A)</td>
<td>28,5 ± 0,4</td>
<td>5,2 ± 0,2</td>
<td>1117 ± 119</td>
</tr>
<tr>
<td>Saltsjön/Beckholmen</td>
<td>69,2 ± 1,8 *</td>
<td>31,5 ± 0,9 *</td>
<td>4,6 ± 0,2</td>
<td>743 ± 198</td>
</tr>
<tr>
<td>Bråviken/Djurö kvarn</td>
<td>58,2 ± 1,2 *</td>
<td>27,5 ± 0,6</td>
<td>5,8 ± 0,3</td>
<td>784 ± 102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Könsmogna hanar</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvädöfjärden</td>
<td>64,8 ± 3,0</td>
<td>29,8 ± 1,2</td>
<td>6,0 ± 0,4</td>
<td>0,47 ± 0,08</td>
</tr>
<tr>
<td>Saltsjön/Beckholmen</td>
<td>67,5 ± 3,7</td>
<td>32,3 ± 1,3</td>
<td>5,6 ± 0,4</td>
<td>0,42 ± 0,11</td>
</tr>
<tr>
<td>Bråviken/Djurö kvarn</td>
<td>60,8 ± 3,5</td>
<td>29,3 ± 1,8</td>
<td>7,3 ± 1,1</td>
<td>0,41 ± 0,15</td>
</tr>
</tbody>
</table>

(A) medelvärde ± standardfel; * p < 0,05 jämfört med Kvädöfjärden

I miljöövervakningssammanhang mätts halten vitellogenin i blodplasma även hos hanfisk för att ta reda på om de exponerats för ämnen med östrogenliknande effekter. I Tabell 5 kan ses att det inte föreligger några statistiskt belagda skillnader mellan lokalerna.

Röda blodceller och hemoglobin i blodet

Det undersöktes om fisken uppvisar blodbrist eller någon annan form av effekt på syreupptagningsförmågan genom att mäta blodets volym av röda blodceller (Hematokrit, Ht), och de röda blodcellernas innehåll av hemoglobin (Hb) och andel omogna röda blodceller (iRBC). Både Ht-värdet och Hb-halten är signifikant högre hos abborrhonorna från Saltsjön jämfört med referensen Kvädöfjärden (Tabell 5). Hos abborrhonorna från Bråviken är Hb-halten signifikant lägre än hos fisken på referenslokalen. Skillnaderna speglar sannolikt olika behov och kanske förmåga att ta upp syre hos fiskgrupperna där fisken från Saltsjön tycks kompensera med lite högre andel röda blodceller, medan fisken från Bråviken tycks klara lite lägre nivåer. Genom att beräkna kvoten mellan Hb och Ht kan man se att den är i det närmaste lika för alla tre fiskgrupperna. Det tyder på att skillnaderna i Hb och Ht inte bedöms som allvarliga utan sannolikt speglar normala anpassningar.
Glukos i blodet

Halten glukos i blodet (Tabell 5) analyserades för att få en uppfattning om kolhydratmetabolismen kunde vara påverkad. Resultaten visar inga statistiska skillnader mellan de undersökta lokalerna, vilket således indikerar att kolhydratmetabolismen inte verkar vara påverkad i Saltsjön eller Bråviken när undersökningen gjordes.

Vita blodceller

Vita blodcellsbildens undersökning indikerar att immunförsvaret är något påverkat. Mycket få avvikelser kunde noteras (Tabell 6). Däremot sågs inga skillnader i andelen lymfocyter, granulocyter eller andelen omogna blodceller (iRBC). Förutom att andelen trombocyter är statistiskt högre hos fisken från Bråviken jämfört med Kvädöfjärden, ses en tendens till högre andel totala vita blodceller (WBC) i både Bråviken och Saltsjön lokalerna jämfört med referenslokalen. Det tyder på att de förövat lokala immunförsvar och i det förorena området. Medan det inte finns några statistiskt belagda skillnader mellan de undersökta lokalerna, är de troligtvis påverkade i de båda områdena när undersökningen gjordes.

Tabell 6. Andelen lymfocyter (%), granulocyter (%), trombocyter (%), total andelen vita blodceller (WBC, %) och andelen omogna röda blodceller (iRBC, %) i blodet hos abborre från Kvädöfjärden, Saltsjön/Beckholmen och Bråviken/Djurö kvarn.

<table>
<thead>
<tr>
<th>Station</th>
<th>Lymfocyter %</th>
<th>Granulocyter %</th>
<th>Trombocyter %</th>
<th>WBC %</th>
<th>iRBC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvädöfjärden</td>
<td>2,30 ± 0,11 (A)</td>
<td>1,07 ± 0,08</td>
<td>1,63 ± 0,11</td>
<td>5,00 ± 0,17</td>
<td>0,85 ± 0,08</td>
</tr>
<tr>
<td>Saltsjön/Beckholmen</td>
<td>2,65 ± 0,15</td>
<td>1,08 ± 0,08</td>
<td>1,92 ± 0,10</td>
<td>5,65 ± 0,23</td>
<td>1,05 ± 0,09</td>
</tr>
<tr>
<td>Bråviken/Djurö kvarn</td>
<td>2,67 ± 0,157</td>
<td>1,02 ± 0,11</td>
<td>2,14 ± 0,17 *</td>
<td>5,84 ± 0,35</td>
<td>0,72 ± 0,07</td>
</tr>
<tr>
<td>Könsmogna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvädöfjärden</td>
<td>1,96 ± 0,38</td>
<td>0,89 ± 0,19</td>
<td>1,57 ± 0,38</td>
<td>4,42 ± 0,71</td>
<td>0,90 ± 0,16</td>
</tr>
<tr>
<td>Saltsjön/Beckholmen</td>
<td>2,04 ± 0,33</td>
<td>0,96 ± 0,21</td>
<td>1,19 ± 0,17</td>
<td>4,19 ± 0,52</td>
<td>0,57 ± 0,07</td>
</tr>
<tr>
<td>Bråviken/Djurö kvarn</td>
<td>2,51 ± 0,17</td>
<td>0,93 ± 0,12</td>
<td>1,73 ± 0,19</td>
<td>5,62 ± 0,34</td>
<td>0,59 ± 0,07</td>
</tr>
</tbody>
</table>

(A) medelvärde ± standardfel; * p < 0,05 jämfört med Kvädöfjärden

Jonbalansen

<table>
<thead>
<tr>
<th>Station</th>
<th>Klorid mmol/l</th>
<th>Natrium mmol/l</th>
<th>Kalium mmol/l</th>
<th>Kalcium mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könnomgna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvädöfjärden</td>
<td>104,0 ± 0,9 (A)</td>
<td>157,7 ± 1,0</td>
<td>3,35 ± 0,10</td>
<td>1,25 ± 0,05</td>
</tr>
<tr>
<td>Saltsjön/Beckholmen</td>
<td>102,2 ± 1,2</td>
<td>161,8 ± 2,2</td>
<td>3,39 ± 0,11</td>
<td>1,20 ± 0,02</td>
</tr>
<tr>
<td>Bråviken/Djurö kvarn</td>
<td>103,7 ± 1,1</td>
<td>154,3 ± 1,1</td>
<td>3,89 ± 0,07 *</td>
<td>1,21 ± 0,04</td>
</tr>
<tr>
<td>Könnomgna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvädöfjärden</td>
<td>103,8 ± 2,7</td>
<td>155,1 ± 2,3</td>
<td>3,77 ± 0,15</td>
<td>1,15 ± 0,07</td>
</tr>
<tr>
<td>Saltsjön/Beckholmen</td>
<td>95,7 ± 2,4</td>
<td>149,6 ± 6,8</td>
<td>3,74 ± 0,18</td>
<td>1,19 ± 0,09</td>
</tr>
<tr>
<td>Bråviken/Djurö kvarn</td>
<td>103,4 ± 1,5</td>
<td>150,6 ± 3,7</td>
<td>4,12 ± 0,22</td>
<td>0,95 ± 0,17</td>
</tr>
</tbody>
</table>

(A) medelvärde ± standardfel; * p < 0,05 jämfört med Kvädöfjärden

EROD i levern

EROD-aktiviteten mäts för att ta reda på om fisken blivit exponerad för vissa typer av miljögifter (Tabell 8). Resultatena visar att det inte föreligger någon statistisk belagd skillnad i EROD nivåer mellan honabborrarna från de två recipientlokalerna jämfört med referenslokal Kvädöfjärden. Det finns dock en tendens till något högre EROD aktiviteter hos honfisken från Saltsjön jämfört med referensen och hos hanabborrarna från Bråviken jämfört med referensen. Tidigare undersökningar i dessa eller närliggande båda områden visar på förhöjda EROD aktiviteter hos abborre (Hansson et al., 2006; Hanson et al., 2010). Förhöjda EROD aktiviteter antyder att fiskarna har varit exponerade för ämnen som inducerar (ökar) EROD-aktiviteten, t.ex så kallade polycykliska aromatiska kolväten (PAH) som t.ex. kan finnas i fossil olja.

EROD-resultaten visar också att nivåerna för EROD-aktiviteterna är relativt höga och är i nivå med de högsta EROD-värdena som observeras i tidserien hos abborrarna i Kvädöfjärden (Mustamäki et al., 2018a). I Kvädöfjärden har EROD-aktiviteten analyserats årligen sedan 1988 och nivåerna pendlar mellan cirka 0.04 till cirka 0,25 mmol/mg protein x minut. Fram till cirka 2010 sågs en successiv ökning. Denna ökning som också observerades hos abborre från andra referenslokaler i Östersjön anses åtminstone delvis kunna bero på ökad bioturbation orsakad av kraftiga förändringar i bottenfaunasamhället och därmed frigörande av ”gamla” miljögifter ur sediment (Hanson et al., 2016). Efter 2010 har nivåerna varierat relativ mycket mellan åren i referenslokalen. 2017 är nivån bland de högsta i tidserien. Vad orsaken till de relativt höga nivåerna kan vara är inte känt men resultaten tycks indikera att fiskarna från samtliga områden sannolikt är exponerade för några typer av miljöföroreningar.

Antioxidantymer och oxidativ stress

Enzymen glutation S-transferas (GST) och glutationreduktas (GR) i levern uppvisar inga signifikanta skillnader hos abborrarna från Saltsjön och Bråviken jämfört med referenslokalen Kvädöfjärden (Tabell 8). Däremot är aktiviteten av enzymet katalas högre hos honabborrarna i Bråviken jämfört med referensen (Tabell 8). En liknande tendens finns även hos hanfisken. En ökad katalas-aktivitet visar att oxidantförsvaret är mer aktiverat hos
fiskarna från Bråvikenområdet och betyder att fisken är mer utsatt för oxidativ stress och kan tyda på en påverkan på fettmetabolismen.

Acetylkolinerester

Aktiviteten av enzymet acetylkolinerester (AChE) reglerar nedbrytningen av transmittersubstansen acetylkolin i nerv-/muskelsystemet. Aktiviteten mäts i muskel för att ta reda på om fisken är exponerade för vissa miljöfarliga ämnen som kan hämma detta enzym. Mest kända exemplet på sådana ämnen är några insektbekämpningsmedel som inte längre används i så stor utsträckning. Det finns även misstanke om att höga nivåer av andra ämnen däribland en stor grupp ämnen som kallas organofosfaterat som finns i vissa bekämpningsmedel, mjukgörare i plaster och syntetiska smörjoljor. Resultaten visar att AChE aktiviteten hos honabbbrorna från Bråvikenlokalen var signifikant högre jämfört med referens Kvädöfjärden (Tabell 8). Det finns också en tendens till att nivåerna av AChE hos hanabbbrorna också är högre i Bråvikenlokalen. Eftersom resultaten visar att nivåerna är högre hos fisken i Bråviken jämfört med referensen indikerar således inte resultaten att det finns ämnen i i Bråvikenlokalen som hämmar enzymet AChE. Vad orsaken är till att det är en relativt stor skillnad mellan lokalerna är dock oklar.

Tabell 8. Aktiviteter av enzymerna EROD, glutationreduktas (GR), glutation S-transferas (GST), katalas och acetylkolinerester (AChE) hos abborre från Kvädöfjärden, Saltsjön/Beckholmen och Bråviken/Djurö kvarn.

<table>
<thead>
<tr>
<th>Station</th>
<th>EROD (1)</th>
<th>GR (1)</th>
<th>GST (2)</th>
<th>Katalas (2)</th>
<th>AChE (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmognna honar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvädöfjärden</td>
<td>0,206 ± 0,015 (A)</td>
<td>10,2 ± 0,3</td>
<td>0,139 ± 0,004</td>
<td>148 ± 8</td>
<td>17,8 ± 1,3</td>
</tr>
<tr>
<td>Saltsjön/Beckholmen</td>
<td>0,260 ± 0,022</td>
<td>10,3 ± 0,3</td>
<td>0,131 ± 0,006</td>
<td>134 ± 9</td>
<td>20,5 ± 1,6</td>
</tr>
<tr>
<td>Bråviken/Djurö kvarn</td>
<td>0,230 ± 0,019</td>
<td>10,2 ± 0,2</td>
<td>0,149 ± 0,004</td>
<td>188 ± 8 *</td>
<td>24,1 ± 1,2 *</td>
</tr>
<tr>
<td>Könsmognna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvädöfjärden</td>
<td>0,301 ± 0,072</td>
<td>11,1 ± 0,6</td>
<td>0,153 ± 0,008</td>
<td>183 ± 10</td>
<td>20,1 ± 3,5</td>
</tr>
<tr>
<td>Saltsjön/Beckholmen</td>
<td>0,313 ± 0,045</td>
<td>10,7 ± 0,7</td>
<td>0,141 ± 0,009</td>
<td>195 ± 11</td>
<td>26,5 ± 1,6</td>
</tr>
<tr>
<td>Bråviken/Djurö kvarn</td>
<td>0,526 ± 0,071</td>
<td>10,3 ± 0,4</td>
<td>0,179 ± 0,004</td>
<td>226 ± 28</td>
<td>35,4 ± 4,6 *</td>
</tr>
</tbody>
</table>

(1) nmol/mg prot. x min; (2) µmol/mg prot. x min; * p < 0,05 jämfört med Kvädöfjärden; (A) medelvärde ± standardfel;
Sammanfattande beskrivning av påverkan i lokalerna

Saltsjön

Bråviken
Resultaten visar att det hos honabborrarna från Bråviken ses några tydliga avvikelser i 6 variabler jämfört med referensen Kvädöfjärden. För honabborrarna gäller dessa avvikelser signifikant mindre konditionsfaktor (CF), högre halt hemoglobin, högre plasmahalt av kalium, större andel trombocyter (och en tendens till högre andel vitablodceller) och högre katalas-aktivitet och AChE –aktivitet. Dessa resultat tyder på att det finns en påverkan på fiskens kondition, förmågan att ta upp syre, oxidativ stress, indikation på skador och läckage från celler, och på nervösreglering. Utöver att även hanfisk från lokalen uppvisade signifikant mindre CF och högre AChE aktivitet uppvisade dessa mindre gonader vilket tyder på att fisken från Bråviken också uppvisar påverkan på förtplantningen. Även för fisken tillväxt finns en tendens som tyder på långsammare tillväxt hos abborren från Bråviken, men det tycks inte vara lika tydlig som för fisken från Saltsjön.
Tabell 9. Parametrar i undersökningen 2017 där statistiskt signifikant skillnad (p<0,05) noterades på båda lokalerna Saltsjön/Beckholmen och Bråviken/Djurö kvarn lokaler jämfört med referenslokal Kvädöfjärden. S= Signifikant skillnad mot Kvädöfjärden med avseende på honabborrar. s= Signifikant skillnad mot Torhamn med avseende på hanabborrar.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beckholmen</th>
<th>Bråviken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproduktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonadosomatiskt index (GSI)</td>
<td>S s</td>
<td>s</td>
</tr>
<tr>
<td>Vitellogenin (hane)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vitellogenin (hona)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kondition och metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konditionsfaktor (CF)</td>
<td>S s</td>
<td>S s</td>
</tr>
<tr>
<td>Leversomatiskt index (LSI)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>glukos</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Avgiftningskapacitet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EROD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GST</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Katalas</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Immunförsvar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lymfocyter</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Granulocyter</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trombocyter</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Avgiftningskapacitet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematokrit (Ht)</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>Hemoglobin (Hb)</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Omogna röda blodceller (iRBC)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jonreglering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natrium (Na)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kalium (K)</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Klorid (Cl)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kalcium (Ca)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nervfunktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylkolinesteras (AChE)</td>
<td>-</td>
<td>S s</td>
</tr>
</tbody>
</table>
Sammanvägda bedömningar och slutsatser

Ett stort antal parametrar ingår i den utförda fiskfysiologiska undersökningen. Syftet är att kunna göra en bedömning av fiskhälsan på de olika lokalerna utifrån en sammanvägning av resultaten från parametrarna. I fiskfysiologiska undersökningar anses en tydlig skillnad föreligga i en parameter om en statistiskt signifikant skillnad (p<0,05) finns mellan en recipientlokal och en referenslokal. I föreliggande undersökning har de statistiskt signifikanta skillnaderna sammanfattats i Tabell 9 för såväl honabborror som hanabborrar.

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Parameter/biomarkör</th>
<th>Beckholmen</th>
<th>Bråviken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortplantning</td>
<td>GSI, vitellogenin</td>
<td>S</td>
<td>s</td>
</tr>
<tr>
<td>Kondition o energi</td>
<td>LSI, CF, glukos</td>
<td>S</td>
<td>S,S</td>
</tr>
<tr>
<td>Liverfunktioner</td>
<td>EROD, GR, GST, Katalas</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Immunförsvar</td>
<td>Vita Blodceller</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Hematologi</td>
<td>Ht, Hb, IRBC</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Jonreglering</td>
<td>Na, K, Cl, Ca</td>
<td>SS</td>
<td>S</td>
</tr>
<tr>
<td>nervfunktion</td>
<td>AChE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 10. Sammanfattande beskrivning av om det finns en påverkan i de olika fysiologiska funktioner där ett antal parametrar analyserats i fisk från lokalerna i Bråviken och Beckholmen. S= Signifikant skillnad mot Kvädöfjärden med avseende på honabborror. s= Signifikant skillnad mot Torhamn med avseende på hanabborror.

Ingen/obetydlig påverkan på funktion
Påverkan på funktion (ytterligare undersökning bör göras)
Oacceptabel störning i funktion
I tidskriften Havet beskrivs också denna fiskmodell för bedömning av fiskfysiologiska undersökningar där även halter av miljögifter ingår (Reutgardh et al., 2010). Förutom att således även miljögiftshalter ingår i denna bedömningsmall införs en marginell förenkling för bedömningen av när fiskens hälsa är påverkad. Den bedöms påverkad om minst fem biomarkörer (parametrar), i minst två olika funktionella grupper, visar på signifikant skillnad. Även i denna modell, som således i allt väsentligt är lik modellen som beskrivs i stycket ovan, ger störd forplante och reducerad kondition bedömningen påverkad fiskhälsa.

Tillämpas detta på resultaten från 2017 år undersökning kan man se att det finns en påverkan i minst tre funktioner (Tabell 10) hos fischen från båda lokalerna och för två av dessa bedöms störningarna som oacceptabel. Den samlade bedömningen blir även här att fiskens hälsa är påverkad.

Med hjälp av dessa snarliga modeller för att bedöma fiskhälsa visar resultaten att fischen i båda undersökta lokalerna uppvisar en tydlig påverkan i flera olika fysiologiska funktioner då jämförelser görs mot referenslokal Kvädöfjärden. Avvikelsena bedöms som allvarliga och det kan inte uteslutas att de kan ge störningar på populationsnivå.

Erkännande

Vi vill tacka Linda Andersson, Jenny Lycken och Linda Hasselberg Frank för teknisk assistans vid provtagningen och analysarbetet. Vi vill också tacka att vi fick tillgång till att sumpa fisken och ha provtagningen av fisken vid Beckholmens Dockförening (Stockholm) och vid Djurö Kvarn (Norrköping).

Litteraturreferenser

"Undersökning av hälsotillståndet hos abborre i fyra områden längs Blekinge kuststräcka 2017"

Lars Förlin (1), Åke Larsson (1), Linda Andersson (1), Jari Parkkonen (1), Anders Walstad (2) och Anders Sjölin (2)

(1) Institutionen för biologi och miljövetenskap, Göteborgs Universitet
(2) Toxicon AB

Maj 2018
Innehållsförteckning

Sammanfattning 3

Inledning och bakgrund 3

Bakgrund och Syfte 4

Material och Metoder 4

Resultat och Diskussion 7

Inledning 7

Fiske och provtagning 7

Morfometriska mått och ålder 7

Konditionsfaktor, CF 7

LSI 8

GSI 9

Vitellen, östrogenicitet 10

Röda blodceller och hemoglobin i blodet 10

Glukos i blodet 11

Vita blodceller 12

Jonbalansen 13

EROD i levern 14

Antioxidantenzym och oxidativ stress 15

Histopatologisk undersökning 16

Sammanfattande beskrivning av påverkan i lokalerna 17

Sammanvägda bedömningar och slutsatser 19

Litteraturreferenser 21
Sammanfattning

I föreliggande undersökning har fiskfysiologisk metodik använts för att undersöka om abborrar som lever nära fyra större tätorter i Blekinge uppvisar hälsoeffekter. Resultaten från recipientlokalerna har jämförts med resultat från referenslokal Torhamn, vilken ingår i nationella övervakningsprogrammet. Metodiken som använts för att studera effekter hos abborrarna är av samma typ som för de effektstudier som idag görs bland annat i den nationella kustfiskövervakningen.

Inledning

I Sverige har det sedan många år använts fysiologiska, biokemiska och histologiska metoder (så kallade biomarkörer) för att studera hälsoeffekter hos fisk som exponeras för miljöfarliga ämnen. Detta har gjorts i såväl kontrollerade akvarieundersökningar i laboratoriet som i fältundersökningar på fiskar från mer eller mindre förorenade recipienter för avloppsvatten (Larsson et al., 1985; Förlin et al., 1986; Larsson et al., 2003; Noaksson et al., 2005; Sturve et al., 2005; Asker et al., 2015). På så sätt har hälsoundersökningar av fisk med hjälp av biomarkörer avslöjat effekter av miljögifter eller komplexa utsläpp i förorenade recipienter. Det har handlat om vattenområden i närheten av skogsindustrier, metallindustrier, petrokemiska industrier eller tätorter. Sedan slutet av 1980-talet används sådan metodik inom Naturvårdsverkets integrerade kustfiskövervakning för att undersöka hälsotillstånd hos fiskar i referenslokaler längs den svenska kusten (Sandström et al., 2005; Ronisz et al., 2005; Hansson et al., 2006; Hanson et al., 2009).

Biomarkörer som används innefattar mätningar som kan ge information om en organisms avgiftningssystem är aktiverat eller ger information om påverkan på viktiga fysiologiska funktioner såsom påverkat immunförsvar eller forplantningsstörningar (Haux and Förlin, 1988; Stegeman et al., 1992; Larsson et al., 2000; Van der Oost et al., 2003). Biomarkörerna kan delas in i markörer för exponering som visar att kemiska ämnen tagits upp av organismen och olika försvarsmekanismer har aktiverats och i markörer för effekt som visar att olika fysiologiska funktioner är påverkade. Det betyder att biomarkörer på individnivå kan visa att fisken har exponerats för kemiska ämnen, visar tidiga tecken på effekter av dessa ämnen eller om fisken är uppenbart stressad av något i miljön. Biomarkörerna kan inte identifiera vilka miljögifter som ger signaler om påverkan, men kan ge viss information om vilka ämnesgrupper det kan röra sig om.
Bakgrund och syfte

I föreliggande undersökning har fiskfysiologisk metodik använts för att undersöka om abborrar som lever nära fyra större tätorter i Blekinge uppvisar hälsoeffekter. Metodiken som används för att studera effekter hos abborrarna är av samma typ som för de effektstudier som idag görs bland annat i den nationella kustfiskövervakningen (Förlin et al., 2017a, b, c). Syftet med undersökningarna är att försöka bedöma vilka hälsoeffekter fiskar uppvisar som lever nära större tätorter på lokaler som kan beskrivas som recipientlokaler. För att få en uppfattning om påverkan i recipientlokaler har fiskarna från dessa jämförts med fiskar från ett referensområde, Torhamn som är en referenslokal inom den nationella miljöövervakningen (Förlin et al., 2017c). De undersökta recipientlokalerna Karlskrona, Ronneby, Karlshamn och Sölvesborg är, tillsammans med referenslokal Torhamn, angivna i Figur 1. Recipientlokalernas placering har framtagits i samarbete med Länsstyrelsen i Blekinge län.

Material och Metoder

Undersökning av fiskarnas hälsotillstånd skulle enligt anbudsunderlaget utföras i fyra områden. Efter diskussioner med myndigheterna bestämdes att provfiske efter abborre skulle utföras på de i tabell 1 angivna positionerna. Resultat från undersökningen skulle jämföras med resultat från undersökning av abborre från referensområdet Torhamn, vilken ingår i det nationella fiskövervakningsprogrammet. De undersökta lokalerna som benämns som recipientlokaler var: Karlskrona, Ronneby, Karlshamn och Sölvesborg.

Fångst och sumpning av fiskarna sköttes av inhyrda fiskare (Tabell 1) och gjordes enligt de standardiserade föreskrifter som finns för denna typ av fiskundersökningar. Provtagning, provberedning och analyser gjordes enligt beskrivningar i undersökningstyp ”Hälsotillstånd hos kustfisk – biologiska effekter på subcellulär och cellulär nivå (Larsson och Förlin, 2006). Vilka effekt- och exponeringsvariabler som ingår i undersökningen av fiskens hälsotillstånd framgår av Tabell 2. All data presenteras som medelvärde ± standardfel. För att undersöka om
signifikanta skillnader mellan grupperna fanns utfördes ANOVA (p<0,05) med efterföljande posthoc-test (Bonferroni) för att ta reda på var de signifikanta skillnaderna fanns.

Tabell 1. Positioner för undersökta stationer i de områden där provfiske utfördes hösten 2017.

<table>
<thead>
<tr>
<th>Station</th>
<th>Provfiskeplats</th>
<th>Start - Lat</th>
<th>Start-Long</th>
<th>Slut - Lat</th>
<th>Slut-Long</th>
<th>Område</th>
<th>Fiskare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torhamn</td>
<td>1 56°,4,696</td>
<td>15° 47,272</td>
<td>56°,4,696</td>
<td>15° 47,272</td>
<td>Torhamn</td>
<td>John-Erik Ungfors</td>
<td></td>
</tr>
<tr>
<td>Karlskrona</td>
<td>1 56°9,54</td>
<td>15° 37,05</td>
<td>56°9,47</td>
<td>15° 37,00</td>
<td>Yttre redden</td>
<td>Per Månsen</td>
<td></td>
</tr>
<tr>
<td>Ronneby</td>
<td>1 56°10,2</td>
<td>15° 18,3</td>
<td>56°9,90</td>
<td>15° 18,2</td>
<td>Ronnebyfjärden</td>
<td>Bengt Larsson</td>
<td></td>
</tr>
<tr>
<td>Ronneby</td>
<td>2 56°10,2</td>
<td>15° 18,4</td>
<td>56°9,90</td>
<td>15° 18,29</td>
<td>Ronnebyfjärden</td>
<td>Bengt Larsson</td>
<td></td>
</tr>
<tr>
<td>Karlskrona</td>
<td>3 56°09,32</td>
<td>14° 51,51</td>
<td>56°9,40</td>
<td>14° 51,63</td>
<td>Karlshamnsfjärd</td>
<td>Mikael Nord</td>
<td></td>
</tr>
<tr>
<td>Karlshamn</td>
<td>2 56°09,15</td>
<td>14° 51,376</td>
<td>56°9,234</td>
<td>14° 51,444</td>
<td>Karlshamnsfjärd</td>
<td>Mikael Nord</td>
<td></td>
</tr>
<tr>
<td>Karlshamn</td>
<td>3 56°08,945</td>
<td>14° 51,422</td>
<td>56°9,04</td>
<td>14° 51,476</td>
<td>Karlshamnsfjärd</td>
<td>Mikael Nord</td>
<td></td>
</tr>
<tr>
<td>Karlshamn</td>
<td>4 56°08,81</td>
<td>14° 51,529</td>
<td>56°8,869</td>
<td>14° 51,36</td>
<td>Karlshamnsfjärd</td>
<td>Mikael Nord</td>
<td></td>
</tr>
<tr>
<td>Sölvesborg</td>
<td>1 56°02,132</td>
<td>14° 35,092</td>
<td>56°02,250</td>
<td>14° 35,167</td>
<td>Sölvesborgsviken</td>
<td>Stefan Larsson</td>
<td></td>
</tr>
<tr>
<td>Sölvesborg</td>
<td>2 56°02,59</td>
<td>14° 34,891</td>
<td>56°02,534</td>
<td>14° 34,999</td>
<td>Sölvesborgsviken</td>
<td>Stefan Larsson</td>
<td></td>
</tr>
<tr>
<td>Sölvesborg</td>
<td>3 56°02,608</td>
<td>14° 35,10</td>
<td>56°02,748</td>
<td>14° 35,141</td>
<td>Sölvesborgsviken</td>
<td>Stefan Larsson</td>
<td></td>
</tr>
<tr>
<td>Sölvesborg</td>
<td>4 56°02,909</td>
<td>14° 35,357</td>
<td>56°02,991</td>
<td>14° 35,499</td>
<td>Sölvesborgsviken</td>
<td>Stefan Larsson</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 2. Effekt- och exponeringsvariabler/indikatorer som ingår i undersökningen av fiskens hälsotillstånd (Larsson och Förlin, 2006).

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Mätvariabel/biomarker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energiilagring, tillväxt, kondition</td>
<td>Total kroppsvikt, somatisk vikt, längd, ålder, somatisk konditionsfaktor</td>
</tr>
<tr>
<td>Fortplantning, hormonstörning</td>
<td>Gonadsomatiskt index (GSI), vitellogenin i blodplasma</td>
</tr>
<tr>
<td>Leverfunktion, avgiftning, oxidativ stress</td>
<td>Leversomatiskt index (LSI), EROD-aktivitet, aktiviteterna av glutationreduktas (GR), glutation S-transferas (GST) och katalas</td>
</tr>
<tr>
<td>Kolhydratmetabolism/stress</td>
<td>Blodglukos</td>
</tr>
<tr>
<td>Syretransport, blodbildning</td>
<td>Hematokrit, omogna röda blodceller (IRBC), hemoglobin</td>
</tr>
<tr>
<td>Immunförsvar, vävnadsskador</td>
<td>Vita blodceller: lymfocyter, granulocyter, trombocyter</td>
</tr>
<tr>
<td>Saltbalans, cellskador</td>
<td>Klorid, natrium, kalium och kalcium i blodplasma</td>
</tr>
<tr>
<td>Exponeringsindikator</td>
<td>EROD-aktivitet, GR-aktivitet, GST-aktivitet, katalasaktivitet,</td>
</tr>
</tbody>
</table>

I korthet går provtagningen till så att fiskens längd och vikt mätes, dess kön registreras och en mängd prover tas för mätning av olika biokemiska och fysiologiska parametrar (biomarkörer). Avsikten är att prover tas från 20 könsmoga honor och 10 hanar från varje lokal.

Resultat och Diskussion

Inledning

Vid resultatsammanställningen och tolkningen av data från undersökningen av abborrarnas hälsotillstånd har de undersökta fiskarna delats in i de två grupperna könsmogna honor och könsmogna hanar. Anledningen är att det är känt att vissa av variablerna som undersöks kan variera mellan kön och med könsmognad. Det är samma upplägg som inom nationella övervakningen där fokus ligger på resultat för könsmogna honor. Könsmogna hanar är huvudsakligen medtagna i undersökningen för mätning av halten vitellogenin i blod som markör för en påverkan av hormonstörande ämnen.

Fiske, provtagning och analysarbete

Avsikten var att ta prover från 20 könsmogna honor och 10 hanar av storleken 20-30 cm från varje lokal. Det lyckades från samtliga lokaler att få ta prover på 20 honor, medan det endast fanns fullt antal hanar i Torhamn och Karlskrona och lite färre i Ronneby (8 hanar) och i Karlskrona (7 hanar) och väldigt få i Sölvesborg (3 hanar). Eftersom det var så få hanar i Sölvesborg har den hangruppen strukits i resultatredovisningen. Förutom att det således var lite få hanar i några lokaler gick provtagningen av fisken utan några problem.

Morfometriska mått (kropps- och organindex) och ålder.

Konditionsfaktor, CF

Tabell 3. Medelvärde±standardfel (antal fiskar) för kroppsvikt, kroppslängd, konditionsfaktor (CF), leversomatiskt index (LSI), gonadsomatiskt index (GSI) och ålder hos abborrar från Torhamn, Karlskrona, Ronneby, Karlshamn och Sölvesborg.

<table>
<thead>
<tr>
<th>Station</th>
<th>Längd, cm</th>
<th>Vikt, gram</th>
<th>CF, g/cm³</th>
<th>LSI, %</th>
<th>GSI, %</th>
<th>Ålder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torhamn</td>
<td>27,6 ± 3 (20)</td>
<td>268 ± 9</td>
<td>1,27 ± 0,02</td>
<td>1,52 ± 0,04</td>
<td>5,12 ± 0,21</td>
<td>3,3 ± 0,2</td>
</tr>
<tr>
<td>Karlskrona</td>
<td>27,8 ± 3 (20)</td>
<td>277 ± 9</td>
<td>1,29 ± 0,02</td>
<td>1,97 ± 0,06 *</td>
<td>5,22 ± 0,25</td>
<td>3,5 ± 0,1</td>
</tr>
<tr>
<td>Ronneby</td>
<td>28,7 ± 3 (20)</td>
<td>300 ± 8</td>
<td>1,26 ± 0,02</td>
<td>1,96 ± 0,07 *</td>
<td>5,13 ± 0,23</td>
<td>3,6 ± 0,1</td>
</tr>
<tr>
<td>Karlshamn</td>
<td>27,3 ± 4 (20)</td>
<td>266 ± 11</td>
<td>1,29 ± 0,02</td>
<td>1,63 ± 0,08</td>
<td>4,49 ± 0,27</td>
<td>3,2 ± 0,1</td>
</tr>
<tr>
<td>Sölvesborg</td>
<td>29,7 ± 5 (20)</td>
<td>345 ±17</td>
<td>1,30 ± 0,02</td>
<td>1,54 ± 0,07</td>
<td>5,61 ± 0,27</td>
<td>2,4 ± 0,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>Längd, cm</th>
<th>Vikt, gram</th>
<th>CF, g/cm³</th>
<th>LSI, %</th>
<th>GSI, %</th>
<th>Ålder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torhamn</td>
<td>26,8 ± 3 (10)</td>
<td>258 ± 10</td>
<td>1,33 ± 0,01</td>
<td>1,31 ± 0,04</td>
<td>9,44 ± 0,34</td>
<td>3,5 ± 0,2</td>
</tr>
<tr>
<td>Karlskrona</td>
<td>27,4 ± 4 (10)</td>
<td>271 ± 13</td>
<td>1,30 ± 0,02</td>
<td>1,74 ± 0,13 *</td>
<td>10,39 ± 0,66</td>
<td>4,5 ± 0,5</td>
</tr>
<tr>
<td>Ronneby</td>
<td>28,4 ± 3 (8)</td>
<td>294 ±9</td>
<td>1,29 ± 0,02</td>
<td>1,37 ± 0,10</td>
<td>9,42 ± 0,51</td>
<td>4,0 ± 0,0</td>
</tr>
<tr>
<td>Karlshamn</td>
<td>27,3 ± 5 (7)</td>
<td>263 ±12</td>
<td>1,29 ± 0,02</td>
<td>1,43 ± 0,13</td>
<td>7,98 ± 0,62</td>
<td>3,1 ± 0,3</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Torhamn

LSI
Figur 2. Medelvärdessstandardfel för lever- och gonadsomatiskt index (LSI och GSI) hos hon- och hanabborrar från Torhamn, Karlshamn, Ronneby och Karlskrona samt endast honabborrar från Sölvesborg. Signifikant skillnad (p<0,05) mot Torhamn markerades med stjärna.

GSI

Det kan finnas flera förklaringar till att den relativa gonadvikten kan variera mellan lokalerna. En möjlig förklaring till skillnader i gonadstorlek är att abborrarna har en något senare utveckling, försenad och/eller hämmad gonadutveckling jämfört med de andra undersökta områdena. Orsaken kan vara att naturliga miljöfaktorer såsom vattnets temperatur och tillgången på föda påverkar gonadens utveckling. En ökad tillgång på föda kan leda till en ökad tillväxt hos fisken. Detta kan i sin tur leda till en minskad relativ gonadvikt. Även om statistiskt signifikanta skillnader inte noterades mellan områdena kan det samtidigt inte uteslutas att det i det här fallet kan röra sig om en påverkan av något eller några miljöfarliga ämnen. En hämmad gonadutveckling är en välkänd respons hos fiskar som exponerats permanent för organiska miljögifter i laboratorieexperiment och hos fiskar i komplext förödade receptorer såsom utanför skogsindustrier (Sandström et al., 2015).
Vitellogenin, östrogenicitet

I miljöövervakningssammanhang mäts halten vitellogenin i blodplasma hos hanfisk för att ta reda på om de exponerats för ämnen med östrogenliknande effekter. I Tabell 4 kan ses att det inte föreligger några statistiskt belagda skillnader mellan lokalerna. Vitellogeninhalterna i hanfisk är dock lite höga i samtliga områden. Normalt brukar nivåerna vara i storleksordningen 0,2-1,0 µg/ml (data för 2003-2015 på Torhamn, opublicerat) men här är nivåerna drygt 2,0 µg/ml. Men det gäller ju vid alla lokalerna så det går inte att peka ut de tätortsnära lokalerna som särskild källa för eventuellt utsläpp av ämnen med östrogen verkan.

Tabell 4. Medelvärde±standardfel (antal fiskar) för hematokrit (Ht), hemoglobin (Hb), glukos och vitellogenin i blodet hos abborr från Torhamn, Karlskrona, Ronneby, Karlshamn och Sölvesborg.

<table>
<thead>
<tr>
<th>Station</th>
<th>Hb, g/l</th>
<th>Ht, %</th>
<th>Glukos, mmol/l</th>
<th>Vitellogenin, µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torhamn</td>
<td>64,0 ± 2,0 (20)</td>
<td>28,4 ± 1,1</td>
<td>4,8 ± 0,2</td>
<td>--</td>
</tr>
<tr>
<td>Karlskrona</td>
<td>58,1 ± 1,4 (20)</td>
<td>24,8 ± 0,8 *</td>
<td>6,4 ± 0,3 *</td>
<td>--</td>
</tr>
<tr>
<td>Ronneby</td>
<td>64,6 ± 0,9 (20)</td>
<td>26,8 ± 0,7</td>
<td>5,7 ± 0,2 *</td>
<td>--</td>
</tr>
<tr>
<td>Karlshamn</td>
<td>65,1 ± 1,2 (20)</td>
<td>32,0 ± 1,0</td>
<td>6,2 ± 0,2 *</td>
<td>--</td>
</tr>
<tr>
<td>Sölvesborg</td>
<td>69,3 ± 1,3 (20)</td>
<td>30,8 ± 0,8</td>
<td>6,5 ± 0,4 *</td>
<td>--</td>
</tr>
<tr>
<td>Hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torhamn</td>
<td>60,9 ± 3,9 (10)</td>
<td>27,4 ± 2,3</td>
<td>5,3 ± 0,4</td>
<td>2,1 ± 0,2</td>
</tr>
<tr>
<td>Karlskrona</td>
<td>56,9 ± 3,8 (10)</td>
<td>24,3 ± 1,9</td>
<td>6,6 ± 0,4</td>
<td>2,3 ± 0,2</td>
</tr>
<tr>
<td>Ronneby</td>
<td>65,6 ± 2,1 (8)</td>
<td>30,0 ± 1,9</td>
<td>5,9 ± 0,4</td>
<td>2,6 ± 0,4</td>
</tr>
<tr>
<td>Karlshamn</td>
<td>69,3 ± 1,4 (7)</td>
<td>34,7 ± 1,2</td>
<td>7,7 ± 0,6</td>
<td>2,4 ± 0,3</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Torhamn

Röda blodceller och hemoglobin i blodet

Figur 3. Medelvärde±standardfel för hematokrit, omogna röda blodceller (iRBC) och halten hos hon- och hanabborrar från Torhamn, Karlskrona, Ronneby och Karlshamn samt endast honabborrar från Sölvesborg. Signifikant skillnad (p<0,05) mot Torhamn markeras med stjärna.

Glukos i blodet

Tabell 5. Medelvärde±standardfel (antal fiskar) för andelen lymfocyter (%), granulocyter (%), trombocyter (%), total andelen vita blodceller (WBC, %) och andelen omogna röda blodceller (iRBC, %) i blodet hos abborre från Torhamn, Karlskrona, Ronneby, Karlshamn och Sölvesborg.

<table>
<thead>
<tr>
<th>Station</th>
<th>Lymfocyter %</th>
<th>Granulocyter %</th>
<th>Trombocyter %</th>
<th>WBC %</th>
<th>iRBC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torhamn</td>
<td>2,80 ± 0,19 (20)</td>
<td>1,75 ± 0,11</td>
<td>2,07 ± 0,14</td>
<td>6,62 ± 0,27</td>
<td>0,53 ± 0,11</td>
</tr>
<tr>
<td>Karlskrona</td>
<td>2,17 ± 0,18 (20)</td>
<td>1,03 ± 0,08 *</td>
<td>1,90 ± 0,12</td>
<td>5,11 ± 0,27 *</td>
<td>0,58 ± 0,08</td>
</tr>
<tr>
<td>Ronneby</td>
<td>2,51 ± 0,17 (20)</td>
<td>1,05 ± 0,08 *</td>
<td>1,87 ± 0,12</td>
<td>5,44 ± 0,25 *</td>
<td>1,10 ± 0,12 *</td>
</tr>
<tr>
<td>Karlshamn</td>
<td>2,85 ± 0,14 (20)</td>
<td>1,08 ± 0,09 *</td>
<td>1,70 ± 0,12</td>
<td>5,62 ± 0,22</td>
<td>0,74 ± 0,08</td>
</tr>
<tr>
<td>Sölvesborg</td>
<td>2,13 ± 0,18 (20)</td>
<td>1,14 ± 0,14 *</td>
<td>1,57 ± 0,12</td>
<td>4,83 ± 0,29 *</td>
<td>0,59 ± 0,07</td>
</tr>
<tr>
<td>Hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torhamn</td>
<td>3,08 ± 0,22 (10)</td>
<td>1,49 ± 0,16</td>
<td>2,11 ± 0,19</td>
<td>6,68 ± 0,41</td>
<td>0,63 ± 0,11</td>
</tr>
<tr>
<td>Karlskrona</td>
<td>2,21 ± 0,21 (10)</td>
<td>1,04 ± 0,12</td>
<td>1,95 ± 0,21</td>
<td>5,20 ± 0,42</td>
<td>0,42 ± 0,05</td>
</tr>
<tr>
<td>Ronneby</td>
<td>2,40 ± 0,25 (8)</td>
<td>1,08 ± 0,21</td>
<td>1,83 ± 0,19</td>
<td>5,31 ± 0,36</td>
<td>0,76 ± 0,13</td>
</tr>
<tr>
<td>Karlshamn</td>
<td>2,66 ± 0,30 (7)</td>
<td>0,82 ± 0,10</td>
<td>2,21 ± 0,24</td>
<td>5,69 ± 0,51</td>
<td>1,00 ± 0,23</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Torhamn

Figur 4. Medelvärde±standardfel för andelen granulocyter (%) och totala antalet vita blodkroppar (WBC) hos hon- och hanabborrar från Torhamn, Karlskrona, Ronneby och Karlshamn samt endast honabborrar från Sölvesborg. Signifikant skillnad (p<0,05) mot Torhamn markeras med stjärna.

Jonbalansen

I undersökningen analyserades plasmahalterna av jonerna klorid, natrium, kalium och kalcium för att undersöka om jonbalansen uppvisar rubbningar i jonreglerande organ (Tabell 6).

Tabell 6. Medelvärde±standardfel (antal fiskar) för plasmahalterna av klorid, natrium, kalium och kalcium hos abborr från Torhamn, Karlskrona, Ronneby, Karlshamn och Sölvesborg.

<table>
<thead>
<tr>
<th>Station</th>
<th>Klorid mmol/l</th>
<th>Natrium mmol/l</th>
<th>Kalium mmol/l</th>
<th>Kalcium mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honor Torhamn</td>
<td>106,1 ± 1,9 (9)</td>
<td>161,2 ± 3,2</td>
<td>4,2 ± 0,6</td>
<td>1,24 ± 0,07</td>
</tr>
<tr>
<td>Karlskrona</td>
<td>101,4 ± 1,6 (14)</td>
<td>151,7 ± 2,0</td>
<td>4,0 ± 0,2</td>
<td>1,20 ± 0,03</td>
</tr>
<tr>
<td>Ronneby</td>
<td>100,8 ± 0,9 (9)</td>
<td>154,8 ± 3,4</td>
<td>3,9 ± 0,3</td>
<td>1,11 ± 0,02</td>
</tr>
<tr>
<td>Karlshamn</td>
<td>106,1 ± 1,3 (14)</td>
<td>161,5 ± 1,6</td>
<td>4,0 ± 0,3</td>
<td>1,27 ± 0,06</td>
</tr>
<tr>
<td>Sölvesborg</td>
<td>105,3 ± 2,0 (7)</td>
<td>158,2 ± 1,7</td>
<td>4,3 ± 0,5</td>
<td>1,37 ± 0,10</td>
</tr>
<tr>
<td>Hanar Torhamn</td>
<td>105,2 ± 1,1 (8)</td>
<td>153,2 ± 2,1</td>
<td>3,6 ± 0,2</td>
<td>1,19 ± 0,03</td>
</tr>
<tr>
<td>Karlskrona</td>
<td>103,0 ± 2,1 (8)</td>
<td>144,8 ± 5,0 *</td>
<td>4,9 ± 0,4</td>
<td>1,16 ± 0,09</td>
</tr>
<tr>
<td>Ronneby</td>
<td>103,0 ± 2,0 (7)</td>
<td>155,2 ± 2,4</td>
<td>4,1 ± 0,2</td>
<td>1,15 ± 0,05</td>
</tr>
<tr>
<td>Karlshamn</td>
<td>104,6 ± 2,6 (5)</td>
<td>164,9 ± 2,0</td>
<td>4,3 ± 0,4</td>
<td>1,32 ± 0,15</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Torhamn
Resultaten från undersökningarna visar på inga signifikanta avvikelser för honfiskar när recipientlokalerna jämförs med referenslokalen Torhamn. Det finns dock en tendens till att plasmans innehåll av chlorid och natrium är lägre hos hanabborrarna från Karlskrona och Ronneby jämfört med de tre andra lokalerna. En signifikant lägre halt natrium fanns dock i hanabborrar från Karlskrona jämfört med hanabborrar från Torhamn. Det kan finnas naturliga orsaker till skillnaderna i jon-nivåer i plasman mellan lokalerna eftersom det kan finnas en liten salthaltsskillnad mellan dessa lokaler dvs något lägre salthalt i vattnet vid Karlskrona och Ronneby jämfört med Torhamn. Men påverkan på jonreglerande organ är känd hos fiskar i belastade områden så det kan inte uteslutas att de lägre halterna av chlorid och natrium speglar en påverkan i Ronneby och Karlskrona.

När det gäller kalcium ses inga skillnader mellan lokalerna, och de relativt små skillnader som finns med lite lägre nivåer hos honfisken från Ronneby och lite högre nivåer hos fisken från Sölvesborg torde främst kunna ligga inom ramen för en naturlig variation.

EROD i levern

EROD-aktiviteten mäts för att ta reda på om fisken blivit exponerad för vissa typer av miljögifter (Tabell 7 och Figur 5). Resultaten visar att det inte föreligger någon statistisk belagd skillnad i EROD nivåer mellan honabborrarna från de fyra recipientlokalerna jämfört med referenslokalen Torhamn. Däremot visar resultaten att EROD-aktiviteten hos hanabborrar från Karlshamn är avsevärt högre än hos hanarna från Torhamn och även jämfört med de andra områdena. Dessa resultat visar att hanarna från Karlshamn har varit kraftigt exponerade för ämnen som inducerar (ökar) EROD-aktiviteten, t.ex så kallade polycykliska aromatiska kolväten (PAH) som t.ex. kan finnas i fossil olja. Förutom att dessa resultat således indikerar en kraftig exponering för miljöföroreningar är det minst lika anmärkningsvärt att det endast är hannarna som exponerats för dessa föroreningar. Hur kommer det sig att inte även honorna är exponerade? Förklaringen till det kan möjligt vara att han- och honabborrar inte uppehåller sig på samma ställen i kustområden nära Karlshamn.

EROD-resultaten visar också att nivåerna för EROD-aktivitetera är relativt höga och är i nivå med de högsta EROD-värdena som observeras i tidserien hos abborrarna i Torhamn (Förin et al., 2017c). I Torhamn har EROD-aktiviteten analyserats årligen sedan 2002 och nivåerna pendlar mellan cirka 0.06 till cirka 0.23 nmol/mg protein x minut. Fram till cirka 2010 sågs en successiv ökning. Denna ökning som också observerades hos abborre från andra referenslokaler i Östersjön ansåg kunna bero på ökad bioturbation orsakat av kraftiga förändringar i bottenfaunasamhället och därmed frigörande av "gamla" miljögifter ur sediment. Efter 2010 har nivåerna varierat relativ mycket i Torhamnslokalen, 2017 är nivån bland de högsta i tidserien. Vad orsaken till de relativt höga nivåerna kan vara är inte känd.
men resultaten tycks indikera att fiskarna från samtliga områden sannolikt är exponerade för några typer av miljöföroreningar.

Figur 5. Medelvärde±standardfel för EROD-aktiviteten och Katalas-aktiviteten hos hon- och hanabhörra från Torhamn, Karlskrona, Ronneby och Karlshamn samt endast honabhörra från Sölvesborg. Signifikant skillnad (p<0,05) mot Torhamn markeras med stjärna.

Antioxidantenzymor och oxidativ stress

Aktiviteten av enzymet katalas är signifikant högre hos honabhörrorna från Karlskrona, Ronneby och Sölvesborg jämfört med referenslokal Torhamn. Även honorna från Karlshamn visar en högre katalasaktivitet tendens att vara högre än Torhamn (Tabell 7 och Figur 5). För hanabhörrorna syns en liknande bild men en signifikant högre katalasaktivitet i Karlskrona och Karlshamn medan katalas-aktiviteten hos hanfisk från Ronneby är högre än på Torhamn men inte signifikant skild från Torhamn. En ökad katalasaktivitet visar att oxidantöversvärmare är mer aktiverat hos fiskarna från de undersökta ”recipientlokalerna” och betyder att fisken är mer utsatt för oxidativ stress och uppvisar en påverkan på fettmetabolismen.

I referenslokalen har katalas-aktiviteten som analyserats årligen sedan 2002 i honfisk, successivt ökat fram till 2013 för att därefter stabiliseras och minska något. Aktiviteterna hos fiskarna från recipientlokalerna är högre än de högsta nivåerna i tidsserien. Detta förhållande stärker bilden av att fisken i recipientlokalerna är utsatta för oxidativ stress sannolikt beroende på exponering för miljöföroreningar med oxidantverkan. Det är inte känt vilka ämnen det kan röra sig om men det finns gott om möjliga kandidater som kan inkludera metaller och olika miljögifter särskilt med fenolära egenskaper vilket inkluderar ämnen med antropogen ursprung men också naturligt producerade ämnen såsom vissa algtoxiner.
Enzymen glutation S-transferas (GST) och glutationreduktas (GR) i levern upptäcker inga signifikanta skillnader hos abborrarna mellan de fem undersökta lokalerna Torhamn, Karlskrona, Ronneby, Karlshamn och Sölvesborg (Tabell 7). För GR finns en liten tendens till högre aktiviteter särskilt hos honabborrarna från Sölvesborg jämfört med Torhamn. Det är också intressant att GR-aktiviteten upptäcker samma mönster mellan lokalerna som katalasaktiviteten. Detta kan möjligt vara en indikation på att de ämnen som ger katalasförhöjningarna på de olika lokalerna också påverkar GR-aktiviteten om än betydligt mindre uttalat.

Tabell 7. Medelvärde ± standardfel (antal fiskar) för aktiviteter av enzymerna EROD, glutationreduktas (GR), glutation S-transferas (GST) och katalas hos abborre från Torhamn, Karlskrona, Ronneby, Karlshamn och Sölvesborg.

<table>
<thead>
<tr>
<th>Station</th>
<th>EROD (1)</th>
<th>GR (1)</th>
<th>GST (2)</th>
<th>Katalas (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torhamn</td>
<td>0,19 ± 0,02 (20)</td>
<td>10,5 ± 0,3</td>
<td>0,119 ± 0,006</td>
<td>105 ± 6</td>
</tr>
<tr>
<td>Karlskrona</td>
<td>0,16 ± 0,02 (20)</td>
<td>11,0 ± 0,3</td>
<td>0,101 ± 0,003</td>
<td>134 ± 7 *</td>
</tr>
<tr>
<td>Ronneby</td>
<td>0,16 ± 0,02 (20)</td>
<td>11,2 ± 0,4</td>
<td>0,108 ± 0,005</td>
<td>135 ± 6 *</td>
</tr>
<tr>
<td>Karlshamn</td>
<td>0,24 ± 0,02 (20)</td>
<td>10,7 ± 0,3</td>
<td>0,124 ± 0,005</td>
<td>127 ± 5</td>
</tr>
<tr>
<td>Sölvesborg</td>
<td>0,22 ± 0,03 (20)</td>
<td>11,7 ± 0,2</td>
<td>0,114 ± 0,004</td>
<td>144 ± 6 *</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>EROD (2)</th>
<th>GR (2)</th>
<th>GST (2)</th>
<th>Katalas (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torhamn</td>
<td>0,22 ± 0,04 (8)</td>
<td>11,9 ± 0,7</td>
<td>0,136 ± 0,007</td>
<td>130 ± 12</td>
</tr>
<tr>
<td>Karlskrona</td>
<td>0,15 ± 0,04 (10)</td>
<td>11,3 ± 0,5</td>
<td>0,117 ± 0,004</td>
<td>181 ± 12 *</td>
</tr>
<tr>
<td>Ronneby</td>
<td>0,21 ± 0,06 (8)</td>
<td>12,3 ± 0,5</td>
<td>0,128 ± 0,009</td>
<td>155 ± 15</td>
</tr>
<tr>
<td>Karlshamn</td>
<td>0,66 ± 0,14 (7) *</td>
<td>11,9 ± 0,7</td>
<td>0,141 ± 0,012</td>
<td>185 ± 25 *</td>
</tr>
</tbody>
</table>

Histopatologisk undersökning

En histopatologisk undersökning utfördes för att ta reda på om abborrarna upptäcker cellförändringar i levern. En central del av levern fixerades i buffrad formalin, preparerades, snittades, färgades (HE) och undersöktes i mikroskop. Arbetet utfördes av Sveriges Veterinärmedicinska anstalt (SVA) och redovisas i sin helhet i bilaga 3. Levervävnaden har undersökt avseende olika typer av histologiska förändringar såsom avvikelser i cellstorlek, vakuolisering, inflammatoriska celler m.m. och bedömts med avseende på grad av påverkan vilket möjliggjort att ta fram ett viktat värde på fiskens leverhälsa. Resultaten från de olika parametrar som analyserats upptäcker skillnader mellan lokalerna, vilket kan bero på oliktbest set i belastning av olika miljööreningar och patogener. Torhamn och Sölvesborg hade en högre grad av strukturlöshet (avsaknad av normal leverstruktur) trots relativt hög förekomst av larvae migrans (cellskador till följd av larvers närvaro i levervävnaden) och inflammation. Detta kan tolkas som att påverkan till största delen beror på inverkan såsom parasiter och andra patogener. Intressant är att de två lokalerna som har högst andel leveryta med strukturlöshet, Ronneby och Karlshamn, upptäcker lägre förekomst av larvae migrans och lägre inflammationsgrad. Här bedömedes strukturlösheten istället bero på cellsvullnad (bilaga 3). För ännu en variabel, förekomsten av FCA, som indikerar att fiskens exponerats för carcinogena substanser visar att Karlskrona avviker från övriga lokalerna med en lägre siffra och att den opåverkade referenslokalen har det högsta värdet. Även om det således förekommer skillnader mellan lokalerna för enskilda parametrar visar de uträknade medelvärdena för leverhälsan, där de olika avvikelsena viktats samman, inga signifikanta skillnader mellan lokalerna.
Sammanfattande beskrivning av påverkan i lokalerna

Det noterades genomgående avvikelser mellan referenslokalen och samtliga recipientlokaler för några parametrar men det förekom också avvikelser specifika för enskilda recipientlokaler med avseende på vissa parametrar (tabell 6). Huvudsakligen var det förändringar hos honfisk som noterades på de olika lokalerna.

Karlskrona
För honabborrana så förekom signifikant högre halt glukos, katalas-aktivitet och relativ levervikt (LSI) samt signifikant lägre andel vita blodkroppar (både andel granulocyter och totala antalet vita blodkroppar) och hematokrit. Detta kan tolkas som att en påverkan finns i kolhydratmetabolismen (glukos), leverns avgiftningsskapacitet (katalas och eventuellt LSI), immunförsvar (granulocyter) och osmoregleringen/blodtransporten (hematokrit). Även hanfisk från lokalerna uppfisade signifikant högre katalas-aktivitet och påverkan på osmoregleringen (lägre halt natrium-joner). Hanfisk hade också signifikant högre LSI än referenslokal Torhamn.

Ronneby
För honabborrana så förekom signifikant högre halt glukos och högre relativ levervikt (LSI) samt signifikant lägre andel vita blodkroppar (både andel granulocyter och totala antalet vita blodkroppar) och antalet omogna blodceller (iRBC). Detta kan tolkas som att en påverkan finns i kolhydratmetabolismen (glukos), immunologiska försvar (granulocyter) och produktionen av röda blodceller (iRBC).

Karlshamn
För honabborrana så förekom signifikant högre halt glukos och signifikant lägre andel vita blodkroppar (granulocyter). Detta kan tolkas som att en påverkan finns i kolhydratmetabolismen (glukos) och det immunologiska försvar (granulocyter). I hanfisk noterades en signifikant och mycket hög EROD-aktivitet jämfört med referenslokal Torhamn. Hanfisk från lokalerna uppfisade signifikant högre katalas-aktivitet än referenslokal Torhamn, vilket är i linje med att avgiftningen är förhöjd hos fisk i recipientlokalen.

Sölvesborg
För honabborrana så förekom signifikant högre halt glukos och katalas-aktivitet samt signifikant lägre andel vita blodkroppar (granulocyter och totala antalet vita blodkroppar). Detta kan tolkas som att en påverkan finns i kolhydratmetabolismen (glukos), leverns avgiftningsskapacitet (katalas) och det immunologiska försvar (granulocyter). Notervärt för Sölvesborg är också att fisken som fångades var signifikant större men av signifikant lägre ålder än fisk från övriga lokal. Detta indikerar att fisken i Sölvesborgsviken hade en snabbare tillväxt än fisk från övriga lokaler. Detta kan bero på att de har ett mer gynnsamt habitat med avseende på födotillgång än vad fisk från övriga lokaler har.
Tabell 6. Parametrar i undersökningen 2017 där statistiskt signifikant skillnad (p<0,05) noterades på recipiellolokalerna (Karlskrona, Ronneby, Karlshamn och Sölvesborg) jämfört med referenslokal Torhamn. S= Signifikant skillnad mot Torhamn med avseende på honabborrar. s= Signifikant skillnad mot Torhamn med avseende på hanabborrar.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Karlskrona</th>
<th>Ronneby</th>
<th>Karlshamn</th>
<th>Sölvesborg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morfometri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konditionsfaktor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leversomatiskt index (LSI)</td>
<td>Ss</td>
<td>S</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gonadsomatiskt index (GSI)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hematologi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hematokrit</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>iRBC</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jonbalans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natrium</td>
<td>s</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kalium</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kalcium</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Immunologi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granulocyter</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Lymfocyter</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trombocyter</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WBC</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Östrogenicitet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitellogenin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kolhydratmetabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glukos</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Avgiftningskapacitet</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EROD-aktivitet</td>
<td>-</td>
<td>-</td>
<td>s</td>
<td>-</td>
</tr>
<tr>
<td>Katalas-aktivitet</td>
<td>Ss</td>
<td>S</td>
<td>s</td>
<td>-</td>
</tr>
<tr>
<td>GST-aktivitet</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GR-aktivitet</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Sammanvägda bedömningar och slutsatser

Ett stort antal parametrar ingår i den utförda fiskfysiologiska undersökningen. Syftet är att kunna göra en bedömning av fiskhälsan på de olika lokalerna utifrån en sammanvägning av resultaten från parametrarna. I fiskfysiologiska undersökningar anses en tydlig skillnad föreligga i en parameter om en statistiskt signifikant skillnad (p<0,05) finns mellan en recipientlokal och en referenslokal. I föreliggande undersökning har de signifikanta skillnaderna sammanfattats i Tabell 6 för såväl honabborrar som hanabborrar.

Hur skall då resultaten från undersökningen bedömas? Det har sedan ett antal år tillbaka redovisas en abborrmodell för att bedöma eventuell påverkan i skogsindustrirecipienter (Larsson et al., 2000; Sandström et al., 2004). Denna modell skulle kunna tillämpas på resultaten från de undersöktas recipienter. Modellen bygger på att parametrarna delas in i fysiologiskt funktionella grupper, t ex reproduktion, kolhydratmetabolism och kondition. En oacceptabel påverkan bedöms föreligga i en funktion om minst tre parametrar i en funktionell grupp avviker signifikant från referenslokalens värden. Om minst två funktioner uppvisar en oacceptabel påverkan anses fiskhälsan vara påverkad. Om en eller två parametrar i en funktionell grupp avviker skall vidare undersökningar utföras.

I Tabell 7 redovisas omfattningen av den eventuella påverkan i de olika funktionella grupperna lokalvis. Det framgår att tre till fyra olika funktionella grupper i de olika lokalerna uppvisar en skillnad mot referenslokalen. Sammantaget är skillnaden inte så stor (d v s högst två parametrar avviker per gruppt) att fiskhälsan bedömdes som påverkad. Däremot bedöms påverkan vara av sådan dignitet att vidare undersökningar bör göras.

Tabell 7. Sammanfattande beskrivning av om det finns en påverkan i de olika fysiologiska funktioner där ett antal parametrar analyserats i fisk från recipientlokalerna Karlskrona, Ronneby, Karlshamn och Sölvesborg. S= Signifikant skillnad mot Torhamn med avseende på honabborrar. s= Signifikant skillnad mot Torhamn med avseende på hanabborrar.

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Parameter</th>
<th>Karlskrona</th>
<th>Ronneby</th>
<th>Karlshamn</th>
<th>Sölvesborg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproduktion</td>
<td>GSI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leverfunktioner</td>
<td>EROD, GR, GST, katalas</td>
<td>S, S, S, s, s, s</td>
<td>S, S, S, s, s, s, S</td>
<td>S, S, S, s, s, s, S</td>
<td></td>
</tr>
<tr>
<td>Hämatologi och jonreglering</td>
<td>Ht, Hb, Cl, Na+, K+, Ca++, iRBC</td>
<td>s, s, s</td>
<td>s, s, s</td>
<td>s, s, s, s, s</td>
<td></td>
</tr>
</tbody>
</table>

- Ingen/obetydlig påverkan i funktionen
- Påverkan i funktionen (Vidare undersökningar bör göras)
- Oacceptabel störning i funktionen

Det har i tidskriften Havet också framlagts en modell för bedömning av fiskfysiologiska undersökningar (Reutgardh et al., 2010). I denna modell delas påverkan på fisk in i tre komponenter: Miljögifters halt, exponering för miljögifter och effekter på fisken. För varje komponent görs en bedömning om en påverkan finns eller inte. I föreliggande undersökning finns inte kemiska analysdata tillgängliga. Enligt modellen bedöms fiskhälsan som påverkad om minst fem biomarkörer (parametrar), i minst två olika funktionella grupper, visar på signifikant skillnad.
Detta kan tillämpas på resultaten från undersökningen 2017 (Tabell 7). En påverkan finns i minst tre olika funktioner (kolhydratmetabolism, avgiftning och immunologisk funktion) hos fisk från samtliga recipientlokaler.

Litteraturreferenser

Undersökning av hälsotillståndet hos tånglake i Landskrona och Byfjorden/Uddevalla, 2017

Lars Förlin (1), Åke Larsson (1), Jari Parkkonen (1), Fredrik Franzén (2) och Noora Mustamäki (2)

(1) Institutionen för biologi och miljövetenskap, Göteborgs Universitet
(2) Institutionen för akvatiska resurser, Sveriges Lantbruksuniversitet

Oktober 2019
Innehållsförteckning

Inledning 3
Effektstudier hos fisk 3
Syfte 3
Material och Metoder 4
Resultat och Diskussion 6
 Inledning 6
 Fiske, provtagning och analysarbete 6
 Morfometriska mått (kropps- och organindex) och ålder 6
 Konditionsfaktor, CF 6
 LSI 7
 GSI, ESI och vitellogenin 8
 Röda blodceller och hemoglobin i blodet 9
 Glukos i blodet 9
 Vita blodceller 9
 Jonbalans i blodet 10
 EROD i levern 11
 Antioxidantenzyme och oxidativ stress 11
 Acetylkolinesteras 12
 Fortplantningskontroll 13
Sammanfattande beskrivning av påverkan på lokaler 14
Sammanvägda bedömningar och slutsatser 15
Litteraturreferenser 17
Inledning

I föreliggande undersökning har fiskfysiologisk metodik använts för att undersöka hälsoeffekter hos tånglake från hamnen i Landskrona och i mynningen av Byfjorden. Undersökningsarna är en del i ett stort screeningsprojekt som är initierat av Naturvårdsverket för att kartlägga miljögifters biologiska effekter vid ett antal svenska kustområden. Båda områden anses vara s.k. recipentområde; områden som är påverkade av mänsklig aktivitet, utsläpp eller annan störning av människan. Resultaten från recipentområde Landskrona har jämförts med en referenslokal vid Kullen och resultaten från recipentområde Byfjorden har jämförts med referenslokalen Fjällbacka. Fjällbacka ingår som referenslokal i det nationella övervakningsprogrammet för fiskbestånd, fiskhälsa och miljögifter hos fisk. Kullen är en provfiskelokal som används för beståndsskattningsar av fisk men som tidigare inte använts för undersökningar av hälsotillstånd hos fisk. Metodiken som använts för att studera effekter hos tånglakarna är likadan som för de effektstudier som idag görs bland annat i den nationella kustfiskövervakningen.

Effektstudier hos fisk

I Sverige har det sedan många år använts fysiologiska, biokemiska och histologiska metoder (så kallade biomarkörer) för att studera hälsoeffekter hos fisk som exponeras för miljöfarliga ämnen. Detta har gjorts i såväl kontrollerade akvarieundersökningar i laboratoriet som i fältundersökningar på fiskar i fältundersökningar på fiskar från mer eller mindre förorenade recipienter för avloppsvatten (Larsson et al., 1985; Förlin et al., 1986; Larsson et al., 2003; Noaksson et al., 2005; Sturve et al., 2005; Asker et al., 2015). Studier har till exempel utförts i vattenområden som tar emot förorenat vatten från skogsindustrier, metallindustrier, petrokemiska industrier eller tätorter. På så sätt har hälsoundersökningar av fisk med hjälp av biomarkörer avslöjat effekter av miljögifter eller complexa utsläpp i förorena vattendrag. Sedan slutet av 1980-talet används sådan metodik inom Naturvårdsverkets integrerade kustfiskövervakning för att undersöka hälsotillstånd hos fiskar i referenslokaler längs den svenska kusten (Sandström et al., 2005; Ronisz et al., 2005; Hanson et al., 2006; Hanson et al., 2009).

Biomarkörer som används innefattar mätningar som kan ge information om en organismens avgiftningsprocess som är aktiverat eller om viktiga fysiologiska funktioner såsom immunförsvar eller förortning är påverkade (Haux and Förlin, 1988; Stegeman et al., 1992; Larsson et al., 2000; Van der Oost et al., 2003). Biomarkörerna kan delas in i markörer för exponering som visar att kemiska ämnen tagits upp av organismen och olika försvarsmechanismer har aktivierats och i markörer för effekt som visar att olika fysiologiska funktioner är påverkade. Det betyder att biomarkörer på individnivå kan visa att fiskens exponering för kemiska ämnen, visar tidiga tecken på effekter av dessa ämnen eller om fiskens är uppenbart stressad av något i miljön. Biomarkörerna kan inte identifiera vilka miljögifter som ger signaler om påverkan, men kan ge viss information om vilka ämnesgrupper det kan röra sig om.

Syfte

Syftet med undersökningarna var att försöka bedöma vilka hälsoeffekter fiskar uppvisar som lever nära större tätorter på lokaler som kan beskrivas som recipientlokaler. I föreliggande undersökning har därför fiskfysiologisk metodik använts för att undersöka om tånglake i hamnen i Landskrona och i mynningen av Byfjorden nära Uddevallabron uppvisar negativa
hälsoeffekter. Metodiken som används för att studera effekter hos tånglakarna är av samma typ som för de effektstudier som idag görs bland annat i den nationella kustfiskövervakningen (Mustamäki et al., 2019a; Mustamäki et al., 2019b). För att få en uppfattning om påverkan i respektive recipientlokal har fiskarna från dessa jämförts med fiskar från ett närbelägget referensområde, Kullen, för Landskrona-lokalen och Fjällbacka för Byfjorden-lokalen. De undersökta lokalerna Landskrona och Byfjorden, tillsammans med referenslokalerna Kullen och Fjällbacka, är angivna i Figur 1. Lokalernas placering har framtagits i samarbete med respektive Länsstyrelser och Naturvårdsverket.

Figur 1. Lokaler i fysiologiundersökningen på tånglake som utfördes hösten 2017.

Material och Metoder

Allt arbete gjordes enligt de standardiserade föreskrifter som finns för denna typ av fiskundersökningar. Fisket görs med ryssja och fisken sumpas 2-4 dygn för att fisken ska återhämta sig från fångststressen innan provtagningen. Undersökning av fiskarnas hälsostillstånd gjordes således i två recipientområden där Landskrona jämförs med referensområde Kullen och Fjällbacka jämförs med referensområde Fjällbacka (Figur 1, Tabell 1). I Tabell 1 anges positionerna för fisket i de olika lokalerna.

Fångst och sumpning av fiskarna gjordes vid undersökningen i recipientområdet Landskrona av Leif Olsson och fiskarna sumpades vid Borstahusen (Landskrona) och i referensområdet Kullen av Anders Jälkén och fiskarna sumpades i hamnen i Svanshall. I recipientområdet Byfjorden gjordes fiske och sumpning av fiskarna av Bobo Royson (Grundsund) och sumpades vid Kärranäs (Uddevalla) och i referensområdet Fjällbacka gjordes fisket av Alf Gustavsson och fiskarna sumpades i Fjällbacka hamn.
Tabell 1. Positioner för undersökta stationer i de områden där provfiske utfördes hösten 2017.

<table>
<thead>
<tr>
<th>Station</th>
<th>koordinater</th>
<th>Provtagningsdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landskrona</td>
<td>WGS84 decimal (lat, lon) 55.853, 12.831</td>
<td>20171108</td>
</tr>
<tr>
<td>Kullen</td>
<td>WGS84 decimal (lat, lon) 58.644, 11.245</td>
<td>20171109</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>WGS84 decimal (lat, lon) 56.252, 12.663</td>
<td>20171206</td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>WGS84 decimal (lat, lon) 58.327, 11.849</td>
<td>20171205</td>
</tr>
</tbody>
</table>

Tabell 2. Effekt- och exponeringsvariabler/biomarkörer som ingår i undersökningen av fiskens hälsotillstånd (Larsson och Förlin, 2006).

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Mätvariabel/biomarkör</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energilagring, tillväxt, kondition</td>
<td>Total kroppsvikt, somatisk vikt, längd, ålder, somatisk konditionsfaktor (CF)</td>
</tr>
<tr>
<td>Fortplantning, hormonstörning</td>
<td>Gonadsomatiskt index (GSI), vitellogenin (vtg) i blodplasma</td>
</tr>
<tr>
<td>Leverfunktion, avgiftning, oxidativ stress</td>
<td>Leversomatiskt index (LSI), EROD-aktivitet, aktiviteterna av glutationreduktas (GR), glutation S-transferas (GST) och katalas</td>
</tr>
<tr>
<td>Nerv- och muskelfunktion</td>
<td>Acetylcholinesteras aktivitet (AChE-aktivitet)</td>
</tr>
<tr>
<td>Kolhydratmetabolism/stress</td>
<td>Blodglukos</td>
</tr>
<tr>
<td>Syretransport, blodbildning</td>
<td>Hematokrit (Ht), omogna röda blodceller (iRBC), hemoglobin (Hb)</td>
</tr>
<tr>
<td>Immunförsvar, vävnadsskador</td>
<td>Vita blodceller: lymfocyter, granulocyter, trombocyter</td>
</tr>
<tr>
<td>Saltbalans, cellskador</td>
<td>Halter av klorid, natrium, kalium och kalcium i blodplasma</td>
</tr>
<tr>
<td>Fortplantningskontroll</td>
<td>Yngelstatus: antal levande, döda och missbildade yngel</td>
</tr>
<tr>
<td>Exponeringsindikator</td>
<td>EROD-aktivitet, GR-aktivitet, GST-aktivitet, katalasaktivitet, AChE-aktivitet</td>
</tr>
</tbody>
</table>

I korthet gick provtagningen till så att fiskens längd och vikt mättes, dess kön registrerades och en mängd prover togs för mätning av olika biokemiska och fysiologiska parametrar (biomarkörer). Avsikten var att ta prover från 20 könsmogna honor och 10 hanar. För bestämning av yngelstatus var avsikten att ta prover från 40 könsmogna honor.
Resultat och Diskussion

Inledning

Vid resultatsammanställningen och tolkningen av data från undersökningen av tånglakarnas hälso tillstånd har de undersökta fiskarna delats in i de två grupperna könsmogna honor och könsmogna hanar. Anledningen till att dela på könen är att det är känt att vissa av variablerna som undersöks kan variera mellan kön och med könsmognad. Det är samma upplägg som inom nationella övervakningen där fokus ligger på resultat för könsmogna honor. Könsmogna hanar är huvudsakligen medtagna i undersökningen för mätning av halten vitellogenin i blod som markör för en påverkan av hormonstörande ämnen.

Fiske, provtagning och analysarbete

Tabell 3. Antal könsmogna hon- och hantånglakar som prover tagits från för undersökning av fiskens hälso tillstånd i recipientlokalerna Landskrona och Byfjorden och respektive referenslokaler Kullen och Fjällbacka.

<table>
<thead>
<tr>
<th>Station</th>
<th>Könsmogna tånglakehonor</th>
<th>Könsmogna tånglakehanar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landskrona</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Kullen</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>20</td>
<td>8</td>
</tr>
</tbody>
</table>

Morfometriska mått (kropp- och organindex) och ålder.

Både honfiskarna och hanfiskarna från Landskrona var något större än fiskarna från Kullen (Tabell 4). i Byfjorden var hanfiskarna mindre än i Fjällbacka, medan honfisken var av samma storlek i båda lokalerna (Tabell 5). Honfisken från Kullen var äldre än fisken från Landskrona och honfisken från Byfjorden var äldre än fisken från Fjällbacka (Tabell 4). Dessa skillnader tyder på att fisken från Kullen växer långsammare än fisken från Landskrona, och att fisken från Byfjorden växer långsammare än fisken från Fjällbacka.

Konditionsfaktor, CF

I Tabell 4 och 5 redovisas också konditionsfaktorn (CF), som är ett mått som beskriver relationen mellan kroppsvikt och längd. CF visade tydliga statistiska skillnader mellan lokalerna Kullen och Landskrona för både hon- och hanfisken (Tabell 4). CF var betydligt mindre i referenslokalen än recipientlokalen Landskrona. Resultaten visar således att fiskarna
Landskrona var betydligt större än fisken från Byfjorden och Fjällbacka. Det fanns ingen skillnad i CF mellan fisken från Byfjorden och Fjällbacka.

Tabell 4. Kroppsvikt, kroppslängd, konditionsfaktor (CF), lever somatiskt index (LSI), gonad somatiskt index för hanar (GSI), embryosomatiskt index för honor (ESI) och ålder hos tånglake från Landskrona och Kullen. Resultaten presenteras som medelvärde ± standardfel.

<table>
<thead>
<tr>
<th>Station</th>
<th>Vikt, gram</th>
<th>Längd, cm</th>
<th>CF (A)</th>
<th>LSI, %</th>
<th>GSI/ESI, %</th>
<th>Ålder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmoga honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullen</td>
<td>57,8 ± 5,8</td>
<td>23,8 ± 0,7</td>
<td>0,41 ± 0,01</td>
<td>1,53 ± 0,05</td>
<td>12,9 ± 1,1</td>
<td>2,2 ± 0,3</td>
</tr>
<tr>
<td>Landskrona</td>
<td>88,9 ± 8,3</td>
<td>25,8 ± 0,7</td>
<td>0,49 ± 0,01</td>
<td>1,50 ± 0,07</td>
<td>14,1 ± 1,0</td>
<td>1,5 ± 0,2</td>
</tr>
<tr>
<td>Könsmoga hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullen</td>
<td>37,9 ± 7,7</td>
<td>22,1 ± 1,4</td>
<td>0,32 ± 0,01</td>
<td>1,06 ± 0,05</td>
<td>0,35 ± 0,02</td>
<td>-</td>
</tr>
<tr>
<td>Landskrona</td>
<td>45,1 ± 3,1</td>
<td>22,4 ± 0,6</td>
<td>0,40 ± 0,01</td>
<td>1,62 ± 0,15</td>
<td>0,29 ± 0,02</td>
<td>-</td>
</tr>
</tbody>
</table>

(Tabell 4) konditionsfaktor, gram/cm³; * p < 0,05 jämfört med Kullen.

Tabell 5. Kroppsvikt, kroppslängd, konditionsfaktor (CF), lever somatiskt index (LSI), gonad somatiskt index för hanar (GSI), embryosomatiskt index för honor (ESI) och ålder hos tånglake från Byfjorden och Fjällbacka. Resultaten presenteras som medelvärde ± standardfel.

<table>
<thead>
<tr>
<th>Station</th>
<th>Vikt, gram</th>
<th>Längd, cm</th>
<th>CF (A)</th>
<th>LSI, %</th>
<th>GSI/ESI, %</th>
<th>Ålder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmoga honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>87,6 ± 7,9</td>
<td>25,3 ± 0,6</td>
<td>0,52 ± 0,02</td>
<td>1,51 ± 0,05</td>
<td>28,0 ± 1,5</td>
<td>1,4 ± 0,2</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>88,2 ± 14</td>
<td>24,3 ± 1,1</td>
<td>0,53 ± 0,03</td>
<td>1,61 ± 0,09</td>
<td>34,6 ± 3,1</td>
<td>2,6 ± 0,1</td>
</tr>
<tr>
<td>Könsmoga hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>63,4 ± 7,8</td>
<td>25,6 ± 1,0</td>
<td>0,37 ± 0,01</td>
<td>1,24 ± 0,11</td>
<td>0,37 ± 0,02</td>
<td>-</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>41,3 ± 9,7</td>
<td>21,6 ± 1,4</td>
<td>0,37 ± 0,01</td>
<td>1,18 ± 0,08</td>
<td>0,46 ± 0,03</td>
<td>-</td>
</tr>
</tbody>
</table>

(Tabell 5) konditionsfaktor, gram/cm³; * p < 0,05 jämfört med Fjällbacka.

LSI (Leversomatiskt index)
I Tabell 4 och 5 redovisas LSI (lever somatiskt index) som är levervikten uttryckt i procent av somatisk kroppsvikt. I föreliggande undersökning visar resultaten att den relativa leverstorleken (LSI) hos hantånglake från referensområdet Landskrona var betydligt större än från referenslokalen Kullen, men någon liknande skillnad fanns inte hos honfisken från dessa lokaler (Tabell 4). Hos honfiskar från Byfjorden var LSI något större jämfört med referenslokalen Fjällbacka, medan hos hanar ingen skillnad observerades (Tabell 5).

Skillnaderna i leverens relativa storlek kan vara ett resultat av variation i upplagring av näringsämnen (fetter och kolhydrater) i levern, men kan också vara ett tecken på påverkan av miljöfarliga ämnen. Exponering för organiska miljögifter kan orsaka en förändrad storlek på lever som kan tyda på förändrad metabolisk aktivitet. Vad orsakerna till dessa skillnader i relativ levervikten är är inte inte fastställda men det går inte att utesluta att leverens större storlek hos hanfisk från Landskrona och honfisk från Byfjorden visar att de är något påverkade av miljöförändringar. Såväl mekanismen bakom som betydelsen av denna leverförändring är oklara.
GSI, ESI och vitellogenin

I Tabell 4 och 5 redovisas GSI (gonad somatiskt index) som är gonadvikten uttryckt i procent av somatisk kroppsvikt. Hos honfiskens är GSI beräknad på den totala vikten av embryon och kallas därför embryo somatiskt index (ESI), medan det hos hanarna är beräknat på gonadvikten (alltså testikelvikten).

I Tabell 6 och 7 redovisas halten vitellogenin (guleprotein) i blodet hos honfiskens. Vitellogenin (vtg) bildas i levern under inverkan av honfiskens östrogen och transportereras via blodet till gonaden för att inkorporeras i ägget. Resultaten visar att vtg-nivåerna är lägre hos fisken från Landskrona och Byfjorden jämfört med respektive referensområde. Skillnaderna får anses vara ganska små men det går inte att utesluta att den speglar en påverkan av föroreningar.

Tabell 6. Hematokrit (Ht), hemoglobin (Hb), glukos och vitellogenin i blodet hos tånglake från Kullen och Landskrona. Resultaten presenteras som medelvärde ± standardfe.

<table>
<thead>
<tr>
<th>Station</th>
<th>Hb, g/l</th>
<th>Ht, %</th>
<th>Glukos, mmol/l</th>
<th>Vitellogenin, µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullen</td>
<td>48,5 ± 3,1 (A)</td>
<td>18,8 ± 1,3</td>
<td>2,3 ± 0,1</td>
<td>115 ± 14</td>
</tr>
<tr>
<td>Landskrona</td>
<td>46,5 ± 2,5</td>
<td>20,3 ± 1,3</td>
<td>2,7 ± 0,1 *</td>
<td>67 ± 9 *</td>
</tr>
<tr>
<td>Könsmogna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullen</td>
<td>47,2 ± 4,2</td>
<td>20,3 ± 2,3</td>
<td>2,5 ± 0,2</td>
<td>0,09 ± 0,02</td>
</tr>
<tr>
<td>Landskrona</td>
<td>61,3 ± 2,8 *</td>
<td>26,9 ± 2,2</td>
<td>3,2 ± 0,2</td>
<td>0,18 ± 0,03 *</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Kullen

Tabell 7. Hematokrit (Ht), hemoglobin (Hb), glukos och vitellogenin i blodet hos tånglake från Fjällbacka och Byfjorden. Resultaten presenteras som medelvärde ± standardfe.

<table>
<thead>
<tr>
<th>Station</th>
<th>Hb, g/l</th>
<th>Ht, %</th>
<th>Glukos, mmol/l</th>
<th>Vitellogenin, µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>41,2 ± 2,3 (A)</td>
<td>16,3 ± 0,9</td>
<td>2,6 ± 0,1</td>
<td>32 ± 6</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>45,6 ± 3,6</td>
<td>19,2 ± 1,0 *</td>
<td>2,6 ± 0,1</td>
<td>13 ± 2 *</td>
</tr>
<tr>
<td>Könsmogna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>56,3 ± 4,9</td>
<td>21,6 ± 1,7</td>
<td>2,8 ± 0,1</td>
<td>0,09 ± 0,02</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>72,3 ± 3,1 *</td>
<td>29,0 ± 1,2 *</td>
<td>3,0 ± 0,1</td>
<td>0,09 ± 0,02</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Fjällbacka

Röda blodceller och hemoglobin i blodet

Det undersöktes om fisken uppvisar blodbrist eller någon annan form av effekt på syreupptagningssförmågan genom att mäta blandets volym av röda blodceller (Hematokrit, Ht), och de röda blodcellernas innehåll av hemoglobin (Hb) och andel omogna röda blodceller (iRBC). Hb-halterna är signifikant högre hos hantånglakarna både i Landskrona och Byfjorden jämfört med respektive referensområde (Tabell 6 och 7). Ht-värdet är signifikant högre hos både han- och honfisken från Byfjorden jämfört referensområdet (Tabell 7). Skillnaderna speglar sannolikt olika behov och kanske förmåga att ta upp syre hos fiskgrupperna där fisken från Byfjorden verkar kompensera med lite högre andel röda blodceller, men även något högre Hb-halter särskilt hos hanfisken. Genom att beräkna kvoten mellan Hb och Ht kan man dock se att skillnaden mellan recipient- och referensområde för de olika fiskgrupperna blir relativ liten. Det tyder på att skillnaderna i Hb och Ht inte bedöms som allvarliga utan sannolikt speglar normala anpassningar.

Glukos i blodet

Vita blodceller

Tabell 8. Andelen lymfocyter (%), granulocyter (%), trombocyter (%), total andelen vita blodceller (WBC, %) och andelen omogna röda blodceller (iRBC, %) i blodet hos tånglaka från Kullen och Landskrona. Resultaten presenteras som medelvärde ± standardfel.

<table>
<thead>
<tr>
<th>Station</th>
<th>Lymfocyter</th>
<th>Granulocyter</th>
<th>Trombocyter</th>
<th>WBC</th>
<th>iRBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kullen</td>
<td>1,03 ± 0,10</td>
<td>0,84 ± 0,10</td>
<td>0,73 ± 0,09</td>
<td>2,59 ± 0,17</td>
<td>0,70 ± 0,08</td>
</tr>
<tr>
<td>Landskrona</td>
<td>1,22 ± 0,07</td>
<td>0,94 ± 0,09</td>
<td>0,88 ± 0,08</td>
<td>3,04 ± 0,13 *</td>
<td>0,50 ± 0,04 *</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Kullen

Tabell 9. Andelen lymfocyter (%), granulocyter (%), trombocyter (%), total andelen vita blodceller (WBC, %) och andelen omogna röda blodceller (iRBC, %) i blodet hos tånglaka från Fjällbacka och Byfjorden. Resultaten presenteras som medelvärde ± standardfel.

<table>
<thead>
<tr>
<th>Station</th>
<th>Lymfocyter</th>
<th>Granulocyter</th>
<th>Trombocyter</th>
<th>WBC</th>
<th>iRBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kullen</td>
<td>0,92 ± 0,18</td>
<td>1,11 ± 0,16</td>
<td>0,71 ± 0,14</td>
<td>2,75 ± 0,18</td>
<td>0,37 ± 0,08</td>
</tr>
<tr>
<td>Landskrona</td>
<td>1,08 ± 0,12</td>
<td>0,95 ± 0,13</td>
<td>0,63 ± 0,06</td>
<td>2,66 ± 0,22</td>
<td>0,73 ± 0,15</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Fjällbacka

Jonbalans i blodet

uteslutas att de låga nivåerna av kalcium i blodet hos tånglakarna från Byfjorden åtminstone delvis beror på exponering för miljöforureningar/miljögifter.

<table>
<thead>
<tr>
<th>Station</th>
<th>Natrium mmol/l</th>
<th>Kalium mmol/l</th>
<th>Kalcium mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullen</td>
<td>181,7 ± 1,4</td>
<td>5,34 ± 0,17</td>
<td>1,37 ± 0,04</td>
</tr>
<tr>
<td>Landskrona</td>
<td>184,1 ± 1,7</td>
<td>5,18 ± 0,14</td>
<td>1,66 ± 0,06 *</td>
</tr>
<tr>
<td>Könsmogna hanar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullen</td>
<td>179,2 ± 3,5</td>
<td>5,27 ± 0,25</td>
<td>1,23 ± 0,10</td>
</tr>
<tr>
<td>Landskrona</td>
<td>181,1 ± 3,8</td>
<td>4,89 ± 0,19</td>
<td>1,57 ± 0,16</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Kullen

<table>
<thead>
<tr>
<th>Station</th>
<th>Natrium mmol/l</th>
<th>Kalium mmol/l</th>
<th>Kalcium mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>194,5 ± 1,2</td>
<td>5,01 ± 0,08</td>
<td>1,74 ± 0,07</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>188,6 ± 1,6 *</td>
<td>4,97 ± 0,23</td>
<td>1,29 ± 0,03 *</td>
</tr>
<tr>
<td>Könsmogna hanar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>194,5 ± 2,0</td>
<td>5,13 ± 0,35</td>
<td>1,93 ± 0,16</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>191,8 ± 1,6</td>
<td>5,09 ± 0,23</td>
<td>1,33 ± 0,04 *</td>
</tr>
</tbody>
</table>

* p < 0,05 jämfört med Fjällbacka

EROD i levern

EROD-aktiviteten mäts för att ta reda på om fisken blivit exponerad för vissa typer av miljögifter (Tabell 12 och 13). Resultaten visar att det föreligger en statistisk belagd skillnad i EROD nivån mellan tånglakarna från Byfjorden jämfört med referenslokalen Fjällbacka. För recipiencinslokalen Landskrona ses ingen skillnad jämfört med referenslokalen Kullen. De förhöjda EROD aktiviteterna hos fisken från Byfjorden tyder på att fiskarna har varit exponerade för ämnen som inducerar (ökar) EROD-aktiviteten, troligast så kallade polycykliska aromatiska kolväten (PAH) som kan finnas i fossil olja eller som bildas vid förbränning.

I Fjällbacka har EROD-aktiviteten analyserats årligen sedan 1989 och nivåerna pendlar mellan cirka 30 till cirka 220 pmol/mg protein x minut. Fram till cirka 2008 sågs en successiv ökning som verkar ha avstannat (Mustamäki et al., 2019b). Denna ökning som också observerades hos tånglake och abborre från referenslokan Kvädöfjärden (Mustamäki et al., 2019a) och hos abborre från flera referenslokaler i Östersjön, anses åtminstone delvis kunna bero på ökad bioturbation orsakad av kraftiga förändringar i bottenfaunasamhället och därmed frigörande av ”gamla” miljögifter ur sediment (Hanson et al., 2016).
Antioxidantenzymer och oxidativ stress

Tabell 12. Aktiviteter av enzymerna EROD, glutationreduktas (GR), glutation S-transferas (GST), katalas och acetylkolinesteras (AChE) hos tånglake från Kullen och Landskrona. Resultaten presenteras som medelvärde ± standardfel.

<table>
<thead>
<tr>
<th>Station</th>
<th>EROD (1)</th>
<th>GR (1)</th>
<th>GST (2)</th>
<th>AChE (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullen</td>
<td>0,112 ± 0,019</td>
<td>31,2 ± 1,3</td>
<td>0,670 ± 0,036</td>
<td>17,2 ± 1,6</td>
</tr>
<tr>
<td>Landskrona</td>
<td>0,079 ± 0,010</td>
<td>26,9 ± 1,0 *</td>
<td>0,445 ± 0,020 *</td>
<td>8,2 ± 0,4 *</td>
</tr>
<tr>
<td>Könsmogna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullen</td>
<td>0,278 ± 0,059</td>
<td>27,2 ± 2,0</td>
<td>0,803 ± 0,056</td>
<td>22,1 ± 3,9</td>
</tr>
<tr>
<td>Landskrona</td>
<td>0,287 ± 0,049</td>
<td>25,2 ± 1,7</td>
<td>0,609 ± 0,051 *</td>
<td>10,9 ± 0,8 *</td>
</tr>
</tbody>
</table>

(1)nmol/mg prot. x min; (2) µmol/mg prot. x min; * p < 0,05 jämfört med Kullen;

Tabell 13. Aktiviteter av enzymerna EROD, glutationreduktas (GR), glutation S-transferas (GST), katalas och acetylkolinesteras (AChE) hos tånglake från Fjällbacka och Byfjorden. Resultaten presenteras som medelvärde ± standardfel.

<table>
<thead>
<tr>
<th>Station</th>
<th>EROD (1)</th>
<th>GR (1)</th>
<th>GST (2)</th>
<th>AChE (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Könsmogna honor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>0,076 ± 0,015</td>
<td>29,3 ± 1,0</td>
<td>0,448 ± 0,019</td>
<td>27,3 ± 3,0</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>0,224 ± 0,033 *</td>
<td>27,3 ± 1,3</td>
<td>0,486 ± 0,058</td>
<td>23,1 ± 3,1</td>
</tr>
<tr>
<td>Könsmogna hanar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fjällbacka</td>
<td>0,166 ± 0,026</td>
<td>31,2 ± 2,7</td>
<td>0,740 ± 0,055</td>
<td>22,1 ± 4,3</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>0,421 ± 0,049 *</td>
<td>23,4 ± 1,5 *</td>
<td>0,742 ± 0,059</td>
<td>24,3 ± 2,3</td>
</tr>
</tbody>
</table>

(1)nmol/mg prot. x min; (2) µmol/mg prot. x min; * p < 0,05 jämfört med Fjällbacka;

Acetylkolinesteras

Aktiviteten av enzymet acetylkolinesteras (AChE) reglerar nedbrytningen av transmittersubstansen acetylolin i nerv-/muskelsystemet. Aktiviteten mäts i muskel för att ta reda på om fisken är exponerade för vissa miljöfarliga ämnen som är kända att hämma detta enzym. Mest kända exemplen på sådana ämnen är några insektbekämpningsmedel som inte längre används i så stor utsträckning. Det finns även misstanke om att höga nivåer av andra ämnen kan ge en påverkan däribland en stor grupp ämnen som kallas organofosfatestrar som finns i vissa bekämpningsmedel, mjukgörare i plaster och syntetiska smörjoljor. Resultaten visar att
AChE aktiviteten hos både hon- och hantånglakarna från Landskrona var signifikant lägre jämfört med referensen Kullen (Tabell 12). Däremot ses inga avvikselser för tånglakarna från recipienten Byfjorden jämfört med referensen Fjällbacka (Tabell 13). Resultaten tyder således på en påverkan på den nervösa regleringen hos fisken från Landskrona.

Fortplantningskontroll

Tånglake används förutom undersökning av vuxna individers hälsa även för reproduktionskontroll eftersom dess embryon utvecklas i honans ovarium. Det gör det möjligt att under en höstens undersökning av missbildningar, tillväxtrubbningar eller onormal dödlighet hos ynglen som eventuellt kan kopplas till belastning av miljögifter (Andersson, 2014).

<table>
<thead>
<tr>
<th></th>
<th>Tidigt döda yngel</th>
<th>Sent döda yngel</th>
<th>Missbildade yngel</th>
<th>Onormala yngel, totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kullen</td>
<td>5,53 %</td>
<td>1,56 %</td>
<td>0,00 %</td>
<td>7,09 %</td>
</tr>
<tr>
<td>Landskrona</td>
<td>1,59 %</td>
<td>2,59 %</td>
<td>2,27 %</td>
<td>6,45 %</td>
</tr>
<tr>
<td>Föreslagna gränsvärden för</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakgrundsöver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Förhöjd nivå</td>
<td>0-2,5 %</td>
<td>0-2 %</td>
<td>0-1 %</td>
<td>0-5 %</td>
</tr>
<tr>
<td>Påverkad nivå</td>
<td>>2,5-5 %</td>
<td>>2,4 %</td>
<td>>1-2 %</td>
<td>>5-10 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tidigt döda yngel</th>
<th>Sent döda yngel</th>
<th>Missbildade yngel</th>
<th>Onormala yngel, totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjällbacka</td>
<td>0,05 %</td>
<td>1,00 %</td>
<td>0,11 %</td>
<td>1,15 %</td>
</tr>
<tr>
<td>Byfjorden</td>
<td>0,75 %</td>
<td>1,38 %</td>
<td>0,32 %</td>
<td>2,45 %</td>
</tr>
<tr>
<td>Föreslagna gränsvärden för</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakgrundsöver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Förhöjd nivå</td>
<td>0-2,5 %</td>
<td>0-2 %</td>
<td>0-1 %</td>
<td>0-5 %</td>
</tr>
<tr>
<td>Påverkad nivå</td>
<td>>2,5-5 %</td>
<td>>2-4 %</td>
<td>>1-2 %</td>
<td>>5-10 %</td>
</tr>
</tbody>
</table>
Sammanfattande beskrivning av påverkan på lokalerna

Ett stort antal parametrar ingår i den utförda fiskfysiologiska undersökningen. Syftet är att kunna göra en bedömning av fiskhälsan på de olika lokalerna utifrån en sammanvägning av resultaten från parametrarna. I fiskfysiologiska undersökningar anses en tydlig skillnad föreligga i en parameter om en statistiskt signifikant skillnad (p<0,05) finns mellan en recipientlokal och en referenslokal. Båda recipientlokalerna, Landskrona och Byfjorden, uppviste flera statistiskt signifikanta skillnader i de uppmätta parametrarna jämfört med respektive referensområde Kullen och Fjällbacka (Tabell 16). Nedan har resultaten från undersökningarna summerats per lokal.

Tabell 16. Parametrar i undersökningen 2017 där statistiskt signifikant skillnad (p<0,05) noterades på lokalerna Byfjorden jämfört med referenslokalen Fjällbacka och på lokalerna Landskrona jämfört med referenslokalen Kullen. S= Signifikant skillnad mot respektive referenslokal med avseende på hantånglake. s= Signifikant skillnad mot respektive referenslokal med avseende på hantånglake.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Landskrona</th>
<th>Byfjorden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproduktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonadosomatiskt index (GSI)</td>
<td>-</td>
<td>S s</td>
</tr>
<tr>
<td>Vitellogenin (hane)</td>
<td>s</td>
<td>-</td>
</tr>
<tr>
<td>Vitellogenin (hona)</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Kondition och metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konditionsfaktor (CF)</td>
<td>S s</td>
<td>-</td>
</tr>
<tr>
<td>Leversomatiskt index (LSI)</td>
<td>s</td>
<td>S</td>
</tr>
<tr>
<td>Glukos</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>Avgiftningskapacitet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EROD</td>
<td>-</td>
<td>S s</td>
</tr>
<tr>
<td>GR</td>
<td>S</td>
<td>s</td>
</tr>
<tr>
<td>GST</td>
<td>S s</td>
<td>-</td>
</tr>
<tr>
<td>Katalas</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Immunförsvar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>Lymfocyter</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Granulocyter</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Trombocyter</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Röda blodceller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematokrit (Ht)</td>
<td>-</td>
<td>S s</td>
</tr>
<tr>
<td>Hemoglobin (Hb)</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>Omogna röda blodceller (iRBC)</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>Jonreglering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natrium (Na)</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>Kalium (K)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Klorid (Cl)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kalcium (Ca)</td>
<td>S</td>
<td>S s</td>
</tr>
<tr>
<td>Nervfunktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylkolinesteras (AChE)</td>
<td>S s</td>
<td>-</td>
</tr>
</tbody>
</table>
Landskrona
Resultaten visar att det hos hontånglakar från Landskrona ses tydliga avvikelser i många variabler jämfört med referensen Kullen (Tabell 16). För honfisken gäller dessa avvikelser signifikant lägre plasma nivåer av vitellogenin, större konditionsfaktor (CF) och högre halt av plasmaglutens, lägre aktivitet av enzymen glutationreduktas och glutationtransferas, högre halv av antalet vita blodceller (WBC), färre omogna röda blodceller (iRBC), högre halt av plasmakalcium och slutligen lägre aktivitet av enzymet acetylkolinesteras (AChE). Dessa resultat tyder på att det finns en påverkan på många av fisken fysiologiska funktioner såsom fiskens fortplantning, åmnesomsättning, saltbalans, immunförsvar och förmåga att ta upp syre, samt en påverkan på den nervösa regleringen. När det gäller hanfisken uppvisade resultaten i likhet med honfisken signifikant större konditionsfaktor, lägre aktiviteter av enzymen GST, och lägre aktivitet av acetylkolinestaras. Dessutom visade resultaten hos hanfisken förhöjda halter av vitellogenin och högre halt av hemoglobin. Utöver dessa avvikelser indikerar resultaten en relativt stor andel missbildade yngel hos tånglaken från Landskrona. Tillsammans indikerar dessa resultat att det finns en påverkan på många av fiskens fysiologiska funktioner såsom fortplantning, åmnesomsättning, saltbalans, immunförsvar och förmåga att ta upp syre, samt en påverkan på den nervösa regleringen.

Byfjorden

Sammanvägda bedömningar och slutsatser
Det har sedan ett antal år tillbaka redovisats en modell för att bedöma eventuell påverkan i skogsindustrirecipienter hälsotillståndet hos abborre (Larsson et al., 2000; Sandström et al., 2005; Hanson et al., 2014; Sandström et al., 2016). Denna modell som vidareutvecklats något i Hanson et al. (2010) kan också tillämpas på resultaten från de undersökta områdena i Landskrona och Byfjorden. Modellen bygger på att parametrarna delas in i fysiologiskt funktionella grupper såsom fortplantning, immunförsvar, kondition, hematologi och jonreglering. En oacceptabel påverkan bedöms föreligga i en funktion om minst tre parametrar i en funktionell grupp avviker signifikant från referenslokals värden. Om minst två funktorer uppsvisar en oacceptabel påverkan anses fiskhälsan vara påverkad. Om en eller två parametrar i en funktionell grupp avviker skall vidare undersökningar utföras. Dessutom säger modellen att om resultaten visar en störd fortplantning eller en minskad tillväxt anses
fiskhälsan påverkad. I Hanson et al. (2010) görs en ytterligare viktning av parametrarna vilket gör att även en reducerad kondition ger bedömningen oacceptabel störning på funktion.

I tidskriften Havet beskrivs också denna fiskmodell för bedömning av fiskfysiologiska undersökningar där även halter av miljögifter ingår (Reutgardh et al., 2010). Förutom att således även miljögiftshalter ingår i denna bedömningsmall införs en marginell förenkling för bedömningen av när fiskens hälsa är påverkad. Den bedöms påverkad om minst fem biomarkörer (parametrar), i minst två olika funktionella grupper, visar på signifikant skillnad. Även i denna modell, som således i allt väsentligt är lik modellen som beskrivs i stycket ovan, ger större fortplattning och reducerad kondition bedömningen påverkad fiskhälsa. Tillämpas detta på resultaten från 2017 år undersökning kan man se att det finns en påverkan i minst sex funktioner (Tabell 16) hos fisken från båda lokalerna. Den samlade bedömningen blir även här att fiskens hälsa är påverkad.

Resultaten visar att flera olika fysiologiska funktioner hos tånglaken är påverkade i de båda undersökta recipientlokalerna Landskrona och Byfjorden. Avvikelmerna bedöms som så allvarliga att störningar på populationsnivå inte kan uteslutas.

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Parameter/biomarkör</th>
<th>Landskrona</th>
<th>Byfjorden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortplantning</td>
<td>GSI, vitellogenin</td>
<td>Ss</td>
<td>SSs</td>
</tr>
<tr>
<td>Kondition o energi</td>
<td>LSI, CF, glukos</td>
<td>SSsS</td>
<td>S</td>
</tr>
<tr>
<td>Leverfunktioner</td>
<td>EROD, GR, GST, Katalas</td>
<td>SSs</td>
<td>Ss</td>
</tr>
<tr>
<td>Immunförsvar</td>
<td>Vita Blodceller</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Hematologi</td>
<td>Ht, Hb, iRBC</td>
<td>Ss</td>
<td>Sss</td>
</tr>
<tr>
<td>Jonreglering</td>
<td>Na, K, Cl, Ca</td>
<td>S</td>
<td>SsS</td>
</tr>
<tr>
<td>Nervfunktion</td>
<td>AChE</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Tabell 17. Sammanfattande beskrivning av om det finns en påverkan i de olika fysiologiska funktioner där ett antal parametrar analyserats i fisk från lokalerna i Landskrona och Byfjorden. S= Signifikant skillnad mot Kullen för Landskrona och mot Fjällbacka för Byfjorden med avseende på hontånglake. s= Signifikant skillnad mot Kullen för Landskrona och mot Fjällbacka för Byfjorden med avseende på hontånglake.

Litteraturreferenser

Hanson N., Förlin L. and Larsson Å. 2010 Spatial and annual variation to define the normal range of biological endpoints: An example with biomarkers in fish. Environ. Toxicol. Chem., 29, 2616-2624.

Sandström O., Grahn O., Larsson Å., Malmaeus M. Viktor T. och Karlsson M. 2016. Återhämtning och kvarvarande miljöeffekter i skogsindustrins recipienter. Utvärdering av 50 års miljöundersökningar IVL-rapport B 2272

Effektscreening – Biologisk effektövervakning i förörenade områden längs Sveriges kust 2017–2018

Lars Förlin, Brita Sundelin, Elena Gorokhova, Marina Magnusson, Johanna Bergkvist, Jari Parkkonen, Åke Larsson, Birgitta Liewenborg, Fredrik Franzén

Beställare
Naturvårdsverket
106 48 Stockholm

Finansiering
Nationell miljöövervakning

Utgivare
Institutionen för biologi och miljövetenskap, Göteborgs universitet

Postadress
Box 463, 405 30 Göteborg